Preparar repositorio para despliegue: código fuente limpio
This commit is contained in:
parent
866f5c432d
commit
3eca832c1a
76 changed files with 5434 additions and 3496 deletions
|
|
@ -13,8 +13,14 @@ def safe_html(texto: Optional[str]) -> str:
|
|||
return ""
|
||||
|
||||
# Sanitize content to prevent layout breakage (e.g. unclosed divs)
|
||||
allowed_tags = ['b', 'i', 'strong', 'em', 'p', 'br', 'span', 'a']
|
||||
allowed_attrs = {'a': ['href', 'target', 'rel']}
|
||||
allowed_tags = [
|
||||
'b', 'i', 'strong', 'em', 'p', 'br', 'span', 'a', 'img',
|
||||
'h1', 'h2', 'h3', 'h4', 'ul', 'ol', 'li', 'blockquote'
|
||||
]
|
||||
allowed_attrs = {
|
||||
'a': ['href', 'target', 'rel', 'title'],
|
||||
'img': ['src', 'alt', 'title', 'width', 'height', 'style']
|
||||
}
|
||||
|
||||
cleaned = bleach.clean(texto, tags=allowed_tags, attributes=allowed_attrs, strip=True)
|
||||
return Markup(cleaned)
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ import os
|
|||
import time
|
||||
from typing import List, Dict, Any, Optional
|
||||
from qdrant_client import QdrantClient
|
||||
from sentence_transformers import SentenceTransformer
|
||||
# from sentence_transformers import SentenceTransformer (Moved to function)
|
||||
|
||||
# Configuración
|
||||
QDRANT_HOST = os.environ.get("QDRANT_HOST", "localhost")
|
||||
|
|
@ -16,7 +16,7 @@ EMB_MODEL = os.environ.get("EMB_MODEL", "sentence-transformers/paraphrase-multil
|
|||
|
||||
# Singleton para clientes globales
|
||||
_qdrant_client: Optional[QdrantClient] = None
|
||||
_embedding_model: Optional[SentenceTransformer] = None
|
||||
_embedding_model: Optional[Any] = None
|
||||
|
||||
|
||||
def get_qdrant_client() -> QdrantClient:
|
||||
|
|
@ -40,12 +40,13 @@ def get_qdrant_client() -> QdrantClient:
|
|||
return _qdrant_client
|
||||
|
||||
|
||||
def get_embedding_model() -> SentenceTransformer:
|
||||
def get_embedding_model() -> Any:
|
||||
"""
|
||||
Obtiene el modelo de embeddings (singleton).
|
||||
"""
|
||||
global _embedding_model
|
||||
if _embedding_model is None:
|
||||
from sentence_transformers import SentenceTransformer
|
||||
_embedding_model = SentenceTransformer(EMB_MODEL, device='cpu')
|
||||
return _embedding_model
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue