rss2/workers/related_worker.py
2026-01-13 13:39:51 +01:00

202 lines
4.9 KiB
Python

import os
import time
import logging
from typing import List, Tuple
import numpy as np
import psycopg2
import psycopg2.extras
logging.basicConfig(
level=logging.INFO,
format='[related] %(asctime)s %(levelname)s: %(message)s'
)
DB = dict(
host=os.environ.get("DB_HOST", "localhost"),
port=int(os.environ.get("DB_PORT", 5432)),
dbname=os.environ.get("DB_NAME", "rss"),
user=os.environ.get("DB_USER", "rss"),
password=os.environ.get("DB_PASS", "x"),
)
EMB_MODEL = os.environ.get(
"EMB_MODEL",
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
)
TOPK = int(os.environ.get("RELATED_TOPK", 10))
BATCH_IDS = int(os.environ.get("RELATED_BATCH_IDS", 200))
SLEEP_IDLE = float(os.environ.get("RELATED_SLEEP", 10))
MIN_SCORE = float(os.environ.get("RELATED_MIN_SCORE", 0.0))
WINDOW_HOURS = int(os.environ.get("RELATED_WINDOW_H", 0))
def get_conn():
return psycopg2.connect(**DB)
def fetch_all_embeddings(cur) -> Tuple[List[int], np.ndarray]:
sql = """
SELECT e.traduccion_id, e.embedding, n.fecha
FROM traduccion_embeddings e
JOIN traducciones t ON t.id = e.traduccion_id
JOIN noticias n ON n.id = t.noticia_id
WHERE e.model = %s
AND t.status = 'done'
AND t.lang_to = 'es'
"""
params = [EMB_MODEL]
if WINDOW_HOURS > 0:
sql += " AND n.fecha >= NOW() - INTERVAL %s"
params.append(f"{WINDOW_HOURS} hours")
cur.execute(sql, params)
rows = cur.fetchall()
if not rows:
return [], None
ids = []
vecs = []
for tr_id, emb, _ in rows:
if not emb:
continue
arr = np.asarray(emb, dtype=np.float32)
if arr.ndim != 1 or arr.size == 0:
continue
ids.append(tr_id)
vecs.append(arr)
if not ids:
return [], None
mat = np.vstack(vecs)
norms = np.linalg.norm(mat, axis=1, keepdims=True)
norms[norms == 0] = 1e-8
mat = mat / norms
return ids, mat
def fetch_pending_ids(cur, limit) -> List[int]:
cur.execute(
"""
SELECT t.id
FROM traducciones t
JOIN traduccion_embeddings e
ON e.traduccion_id = t.id AND e.model = %s
LEFT JOIN related_noticias r
ON r.traduccion_id = t.id
WHERE t.lang_to = 'es'
AND t.status = 'done'
GROUP BY t.id
HAVING COUNT(r.related_traduccion_id) = 0
ORDER BY t.id DESC
LIMIT %s;
""",
(EMB_MODEL, limit),
)
return [r[0] for r in cur.fetchall()]
def topk(idx: int, ids_all: List[int], mat: np.ndarray, K: int) -> List[Tuple[int, float]]:
q = mat[idx]
sims = np.dot(mat, q)
sims[idx] = -999.0
if MIN_SCORE > 0:
mask = sims >= MIN_SCORE
sims = np.where(mask, sims, -999.0)
if K >= len(sims):
top_idx = np.argsort(-sims)
else:
part = np.argpartition(-sims, K)[:K]
top_idx = part[np.argsort(-sims[part])]
return [(ids_all[j], float(sims[j])) for j in top_idx[:K]]
def insert_related(cur, tr_id: int, pairs):
clean = []
for rid, score in pairs:
if rid == tr_id:
continue
s = float(score)
if s <= 0:
continue
clean.append((tr_id, rid, s))
if not clean:
return
psycopg2.extras.execute_values(
cur,
"""
INSERT INTO related_noticias (traduccion_id, related_traduccion_id, score)
VALUES %s
ON CONFLICT (traduccion_id, related_traduccion_id)
DO UPDATE SET score = EXCLUDED.score;
""",
clean,
)
def build_for_ids(conn, target_ids: List[int]) -> int:
with conn.cursor() as cur:
ids_all, mat = fetch_all_embeddings(cur)
if not ids_all or mat is None:
return 0
pos = {tid: i for i, tid in enumerate(ids_all)}
processed = 0
with conn.cursor() as cur:
for tr_id in target_ids:
if tr_id not in pos:
continue
idx = pos[tr_id]
pairs = topk(idx, ids_all, mat, TOPK)
insert_related(cur, tr_id, pairs)
processed += 1
conn.commit()
return processed
def main():
logging.info(
"Iniciando related_worker (EMB=%s TOPK=%s BATCH=%s MIN=%.3f WINDOW_H=%s)",
EMB_MODEL,
TOPK,
BATCH_IDS,
MIN_SCORE,
WINDOW_HOURS,
)
while True:
try:
with get_conn() as conn, conn.cursor() as cur:
todo = fetch_pending_ids(cur, BATCH_IDS)
if not todo:
time.sleep(SLEEP_IDLE)
continue
with get_conn() as conn:
done = build_for_ids(conn, todo)
logging.info("Relacionadas generadas/actualizadas para %d traducciones.", done)
except Exception:
logging.exception("Error en related_worker")
time.sleep(SLEEP_IDLE)
if __name__ == "__main__":
main()