341 lines
9.5 KiB
Python
341 lines
9.5 KiB
Python
import os
|
|
import time
|
|
import logging
|
|
from typing import List, Dict, Any, Optional
|
|
|
|
import numpy as np
|
|
import psycopg2
|
|
import psycopg2.extras
|
|
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='[eventos] %(asctime)s %(levelname)s: %(message)s'
|
|
)
|
|
log = logging.getLogger(__name__)
|
|
|
|
DB = dict(
|
|
host=os.environ.get("DB_HOST", "localhost"),
|
|
port=int(os.environ.get("DB_PORT", 5432)),
|
|
dbname=os.environ.get("DB_NAME", "rss"),
|
|
user=os.environ.get("DB_USER", "rss"),
|
|
password=os.environ.get("DB_PASS", "x"),
|
|
)
|
|
|
|
EVENT_LANGS = [
|
|
s.strip().lower()
|
|
for s in os.environ.get("EVENT_LANGS", "es").split(",")
|
|
if s.strip()
|
|
]
|
|
|
|
EVENT_BATCH_IDS = int(os.environ.get("EVENT_BATCH_IDS", "200"))
|
|
EVENT_SLEEP_IDLE = float(os.environ.get("EVENT_SLEEP_IDLE", "5.0"))
|
|
EVENT_DIST_THRESHOLD = float(os.environ.get("EVENT_DIST_THRESHOLD", "0.25"))
|
|
|
|
EMB_MODEL = os.environ.get(
|
|
"EMB_MODEL",
|
|
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
)
|
|
|
|
|
|
def get_conn():
|
|
return psycopg2.connect(**DB)
|
|
|
|
|
|
def ensure_schema(conn):
|
|
"""
|
|
Asegura que la tabla de eventos y las columnas necesarias existen.
|
|
Aquí se asume el esquema original de eventos con centroid JSONB.
|
|
"""
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS eventos (
|
|
id SERIAL PRIMARY KEY,
|
|
creado_en TIMESTAMP NOT NULL DEFAULT NOW(),
|
|
actualizado_en TIMESTAMP NOT NULL DEFAULT NOW(),
|
|
centroid JSONB NOT NULL,
|
|
total_traducciones INTEGER NOT NULL DEFAULT 1
|
|
);
|
|
"""
|
|
)
|
|
|
|
cur.execute(
|
|
"""
|
|
ALTER TABLE traducciones
|
|
ADD COLUMN IF NOT EXISTS evento_id INTEGER REFERENCES eventos(id);
|
|
"""
|
|
)
|
|
|
|
cur.execute(
|
|
"""
|
|
CREATE INDEX IF NOT EXISTS idx_traducciones_evento
|
|
ON traducciones(evento_id);
|
|
"""
|
|
)
|
|
cur.execute(
|
|
"""
|
|
CREATE INDEX IF NOT EXISTS idx_traducciones_evento_fecha
|
|
ON traducciones(evento_id, noticia_id);
|
|
"""
|
|
)
|
|
|
|
cur.execute(
|
|
"""
|
|
CREATE OR REPLACE FUNCTION actualizar_evento_modificado()
|
|
RETURNS TRIGGER AS $$
|
|
BEGIN
|
|
NEW.actualizado_en = NOW();
|
|
RETURN NEW;
|
|
END;
|
|
$$ LANGUAGE plpgsql;
|
|
"""
|
|
)
|
|
cur.execute("DROP TRIGGER IF EXISTS trg_evento_modificado ON eventos;")
|
|
cur.execute(
|
|
"""
|
|
CREATE TRIGGER trg_evento_modificado
|
|
BEFORE UPDATE ON eventos
|
|
FOR EACH ROW
|
|
EXECUTE FUNCTION actualizar_evento_modificado();
|
|
"""
|
|
)
|
|
conn.commit()
|
|
|
|
|
|
def fetch_pending_traducciones(conn) -> List[int]:
|
|
"""
|
|
Traducciones con status 'done', sin evento asignado
|
|
y que ya tienen embedding en traduccion_embeddings para EMB_MODEL.
|
|
"""
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
SELECT t.id
|
|
FROM traducciones t
|
|
JOIN traduccion_embeddings e
|
|
ON e.traduccion_id = t.id
|
|
AND e.model = %s
|
|
WHERE t.status = 'done'
|
|
AND t.evento_id IS NULL
|
|
AND t.lang_to = ANY(%s)
|
|
ORDER BY t.id DESC
|
|
LIMIT %s;
|
|
""",
|
|
(EMB_MODEL, EVENT_LANGS, EVENT_BATCH_IDS),
|
|
)
|
|
rows = cur.fetchall()
|
|
return [r[0] for r in rows]
|
|
|
|
|
|
def fetch_embeddings_for(conn, tr_ids: List[int]) -> Dict[int, np.ndarray]:
|
|
"""
|
|
Devuelve un diccionario {traduccion_id: vector_numpy}
|
|
leyendo de traduccion_embeddings.embedding para el EMB_MODEL.
|
|
"""
|
|
if not tr_ids:
|
|
return {}
|
|
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
SELECT traduccion_id, embedding
|
|
FROM traduccion_embeddings
|
|
WHERE traduccion_id = ANY(%s)
|
|
AND model = %s;
|
|
""",
|
|
(tr_ids, EMB_MODEL),
|
|
)
|
|
rows = cur.fetchall()
|
|
|
|
out: Dict[int, np.ndarray] = {}
|
|
for tr_id, emb in rows:
|
|
if not emb:
|
|
continue
|
|
arr = np.array([float(x or 0.0) for x in emb], dtype="float32")
|
|
if arr.size == 0:
|
|
continue
|
|
out[int(tr_id)] = arr
|
|
return out
|
|
|
|
|
|
def fetch_centroids(conn) -> List[Dict[str, Any]]:
|
|
"""
|
|
Carga todos los centroides actuales desde eventos.
|
|
"""
|
|
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
|
cur.execute(
|
|
"""
|
|
SELECT id, centroid, total_traducciones
|
|
FROM eventos
|
|
ORDER BY id;
|
|
"""
|
|
)
|
|
rows = cur.fetchall()
|
|
|
|
centroids: List[Dict[str, Any]] = []
|
|
for r in rows:
|
|
cid = int(r["id"])
|
|
raw = r["centroid"]
|
|
cnt = int(r["total_traducciones"] or 1)
|
|
if not isinstance(raw, (list, tuple)):
|
|
continue
|
|
arr = np.array([float(x or 0.0) for x in raw], dtype="float32")
|
|
if arr.size == 0:
|
|
continue
|
|
centroids.append({"id": cid, "vec": arr, "n": cnt})
|
|
return centroids
|
|
|
|
|
|
def cosine_distance(a: np.ndarray, b: np.ndarray) -> float:
|
|
num = float(np.dot(a, b))
|
|
da = float(np.linalg.norm(a))
|
|
db = float(np.linalg.norm(b))
|
|
denom = da * db
|
|
if denom <= 0.0:
|
|
return 1.0
|
|
cos = num / denom
|
|
if cos > 1.0:
|
|
cos = 1.0
|
|
if cos < -1.0:
|
|
cos = -1.0
|
|
return 1.0 - cos
|
|
|
|
|
|
def assign_to_event(
|
|
conn,
|
|
tr_id: int,
|
|
vec: np.ndarray,
|
|
centroids: List[Dict[str, Any]],
|
|
) -> None:
|
|
"""
|
|
Asigna una traducción a un evento existente (si distancia <= umbral)
|
|
o crea un evento nuevo con este vector como centroide.
|
|
"""
|
|
from psycopg2.extras import Json
|
|
|
|
if vec is None or vec.size == 0:
|
|
return
|
|
|
|
if not centroids:
|
|
centroid_list = [float(x) for x in vec.tolist()]
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
INSERT INTO eventos (centroid, total_traducciones)
|
|
VALUES (%s, %s)
|
|
RETURNING id;
|
|
""",
|
|
(Json(centroid_list), 1),
|
|
)
|
|
new_id = cur.fetchone()[0]
|
|
cur.execute(
|
|
"UPDATE traducciones SET evento_id = %s WHERE id = %s;",
|
|
(new_id, tr_id),
|
|
)
|
|
centroids.append({"id": new_id, "vec": vec.copy(), "n": 1})
|
|
return
|
|
|
|
best_idx: Optional[int] = None
|
|
best_dist: float = 1.0
|
|
|
|
for i, c in enumerate(centroids):
|
|
d = cosine_distance(vec, c["vec"])
|
|
if d < best_dist:
|
|
best_dist = d
|
|
best_idx = i
|
|
|
|
if best_idx is not None and best_dist <= EVENT_DIST_THRESHOLD:
|
|
c = centroids[best_idx]
|
|
n_old = c["n"]
|
|
new_n = n_old + 1
|
|
new_vec = (c["vec"] * n_old + vec) / float(new_n)
|
|
|
|
c["vec"] = new_vec
|
|
c["n"] = new_n
|
|
|
|
centroid_list = [float(x) for x in new_vec.tolist()]
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
UPDATE eventos
|
|
SET centroid = %s,
|
|
total_traducciones = total_traducciones + 1
|
|
WHERE id = %s;
|
|
""",
|
|
(Json(centroid_list), c["id"]),
|
|
)
|
|
cur.execute(
|
|
"UPDATE traducciones SET evento_id = %s WHERE id = %s;",
|
|
(c["id"], tr_id),
|
|
)
|
|
return
|
|
|
|
centroid_list = [float(x) for x in vec.tolist()]
|
|
with conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
INSERT INTO eventos (centroid, total_traducciones)
|
|
VALUES (%s, %s)
|
|
RETURNING id;
|
|
""",
|
|
(Json(centroid_list), 1),
|
|
)
|
|
new_id = cur.fetchone()[0]
|
|
cur.execute(
|
|
"UPDATE traducciones SET evento_id = %s WHERE id = %s;",
|
|
(new_id, tr_id),
|
|
)
|
|
centroids.append({"id": new_id, "vec": vec.copy(), "n": 1})
|
|
|
|
|
|
def main():
|
|
log.info(
|
|
"Iniciando cluster_worker eventos "
|
|
"(EVENT_LANGS=%s, BATCH_IDS=%s, DIST_THRESHOLD=%.3f, SLEEP=%.1fs, EMB_MODEL=%s)",
|
|
",".join(EVENT_LANGS),
|
|
EVENT_BATCH_IDS,
|
|
EVENT_DIST_THRESHOLD,
|
|
EVENT_SLEEP_IDLE,
|
|
EMB_MODEL,
|
|
)
|
|
|
|
while True:
|
|
try:
|
|
with get_conn() as conn:
|
|
ensure_schema(conn)
|
|
|
|
pending_ids = fetch_pending_traducciones(conn)
|
|
if not pending_ids:
|
|
time.sleep(EVENT_SLEEP_IDLE)
|
|
continue
|
|
|
|
log.info("Traducciones pendientes de asignar evento: %d", len(pending_ids))
|
|
|
|
emb_by_tr = fetch_embeddings_for(conn, pending_ids)
|
|
if not emb_by_tr:
|
|
log.warning("No se encontraron embeddings para las traducciones pendientes.")
|
|
time.sleep(EVENT_SLEEP_IDLE)
|
|
continue
|
|
|
|
centroids = fetch_centroids(conn)
|
|
log.info("Centroides cargados: %d", len(centroids))
|
|
|
|
processed = 0
|
|
for tr_id in pending_ids:
|
|
vec = emb_by_tr.get(tr_id)
|
|
if vec is None:
|
|
continue
|
|
assign_to_event(conn, tr_id, vec, centroids)
|
|
processed += 1
|
|
|
|
conn.commit()
|
|
log.info("Asignación de eventos completada. Traducciones procesadas: %d", processed)
|
|
|
|
except Exception as e:
|
|
log.exception("Error en cluster_worker: %s", e)
|
|
time.sleep(EVENT_SLEEP_IDLE)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|