update: traducción NLLB y compose

This commit is contained in:
jlimolina 2025-10-09 21:53:56 +02:00
parent 8109dbf274
commit da4c59a0e1
5 changed files with 593 additions and 21 deletions

View file

@ -1,28 +1,45 @@
# Usa una imagen base de Python ligera y moderna
FROM python:3.11-slim
# Permite elegir CPU o CUDA en build:
# - TORCH_CUDA=cpu -> instalar torch CPU
# - TORCH_CUDA=cu121 -> instalar torch con CUDA 12.1
ARG TORCH_CUDA=cpu
# Establece el directorio de trabajo dentro del contenedor
WORKDIR /app
# Instala dependencias del sistema necesarias para psycopg2
# Paquetes nativos necesarios
RUN apt-get update && apt-get install -y --no-install-recommends \
libpq-dev \
gcc \
git \
&& rm -rf /var/lib/apt/lists/*
# Copia solo el archivo de requerimientos primero para aprovechar el caché de Docker
# Copia requirements primero para aprovechar caché
COPY requirements.txt .
# Instala las dependencias de Python
# Instala dependencias Python "comunes"
RUN pip install --no-cache-dir -r requirements.txt
# Copia el resto del código de la aplicación al contenedor
# Instala PyTorch según ARG (CPU o CUDA 12.1)
# (Versión de ejemplo; puedes alinear con tu stack)
RUN if [ "$TORCH_CUDA" = "cu121" ]; then \
pip install --no-cache-dir --index-url https://download.pytorch.org/whl/cu121 \
torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1; \
else \
pip install --no-cache-dir torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1; \
fi
# Copia el resto del código
COPY . .
# Descarga los modelos de lenguaje de NLTK
RUN python download_models.py
# Descarga recursos NLTK si tu app los necesita
# (si no los usas, comenta esta línea)
RUN python download_models.py || true
# Expone el puerto que usará Gunicorn
# Expone el puerto de Gunicorn (servicio web)
EXPOSE 8000
# El CMD se especificará en docker-compose.yml para cada servicio
# El CMD lo define docker-compose para cada servicio

View file

@ -1,7 +1,4 @@
version: '3.8'
services:
# Servicio de la Base de Datos PostgreSQL
db:
image: postgres:15
container_name: rss_db
@ -10,21 +7,21 @@ services:
- POSTGRES_USER=${DB_USER}
- POSTGRES_PASSWORD=${DB_PASS}
volumes:
# Volumen para persistir los datos de la base de datos
- postgres_data:/var/lib/postgresql/data
# Monta la carpeta local con los scripts SQL para inicializar la BD la primera vez
- ./init-db:/docker-entrypoint-initdb.d
restart: always
healthcheck:
# Comprueba si la base de datos está lista para aceptar conexiones
test: ["CMD-SHELL", "pg_isready -U ${DB_USER} -d ${DB_NAME}"]
interval: 5s
timeout: 5s
retries: 5
# Servicio de la Aplicación Web (Gunicorn)
web:
build: .
build:
context: .
args:
# La imagen llevará torch-cu121 por reutilizar Dockerfile; web no usa GPU.
TORCH_CUDA: cu121
container_name: rss_web
command: gunicorn --bind 0.0.0.0:8000 --workers 3 app:app
ports:
@ -36,15 +33,17 @@ services:
- DB_USER=${DB_USER}
- DB_PASS=${DB_PASS}
- SECRET_KEY=${SECRET_KEY}
# - NEWS_PER_PAGE=20 # opcional
depends_on:
db:
# Espera a que el healthcheck de la base de datos sea exitoso antes de iniciar
condition: service_healthy
restart: always
# Servicio del Planificador de Tareas (Scheduler)
scheduler:
build: .
build:
context: .
args:
TORCH_CUDA: cu121
container_name: rss_scheduler
command: python scheduler.py
environment:
@ -56,10 +55,69 @@ services:
- SECRET_KEY=${SECRET_KEY}
depends_on:
db:
# También espera a que la base de datos esté saludable
condition: service_healthy
restart: always
# Define el volumen nombrado para la persistencia de datos
translator:
build:
context: .
args:
TORCH_CUDA: cu121 # PyTorch con CUDA 12.1 en la imagen
container_name: rss_translator
command: python translation_worker.py
environment:
# --- DB ---
- DB_HOST=db
- DB_PORT=5432
- DB_NAME=${DB_NAME}
- DB_USER=${DB_USER}
- DB_PASS=${DB_PASS}
# --- Worker ---
- TARGET_LANGS=es
- TRANSLATOR_BATCH=4 # 1.3B: más seguro en 12 GB (sube a 4 si ves VRAM libre)
- ENQUEUE=200
- TRANSLATOR_SLEEP_IDLE=5
# Tokens (equilibrio calidad/VRAM)
- MAX_SRC_TOKENS=512
- MAX_NEW_TOKENS=256
# Beams: mejor título, cuerpo eficiente
- NUM_BEAMS_TITLE=3
- NUM_BEAMS_BODY=2
# Modelo NLLB 1.3B
- UNIVERSAL_MODEL=facebook/nllb-200-1.3B
# Dispositivo (forzar GPU si está disponible; el worker cae a CPU si hay OOM)
- DEVICE=cuda
# Rendimiento / estabilidad
- PYTHONUNBUFFERED=1
- HF_HOME=/root/.cache/huggingface
- TOKENIZERS_PARALLELISM=false
- PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True,max_split_size_mb:64,garbage_collection_threshold:0.9
# GPU (requiere NVIDIA Container Toolkit en el host)
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility
volumes:
- hf_cache:/root/.cache/huggingface
depends_on:
db:
condition: service_healthy
restart: always
# Habilita GPU (Compose v2 + nvidia-container-toolkit)
gpus: all
# Alternativa con 'deploy':
# deploy:
# resources:
# reservations:
# devices:
# - capabilities: [gpu]
volumes:
postgres_data:
hf_cache:

19
init-db/05-traducciones.sql Executable file
View file

@ -0,0 +1,19 @@
-- 05-traducciones.sql
-- Tabla para almacenar traducciones de noticias
CREATE TABLE IF NOT EXISTS traducciones (
id SERIAL PRIMARY KEY,
noticia_id VARCHAR(32) REFERENCES noticias(id) ON DELETE CASCADE,
lang_from CHAR(5),
lang_to CHAR(5) NOT NULL,
titulo_trad TEXT,
resumen_trad TEXT,
status VARCHAR(16) DEFAULT 'done', -- 'pending' | 'processing' | 'done' | 'error' | 'skipped'
error TEXT,
created_at TIMESTAMP DEFAULT NOW(),
UNIQUE (noticia_id, lang_to)
);
-- Índice útil para filtrar por idioma destino
CREATE INDEX IF NOT EXISTS traducciones_to_idx ON traducciones (lang_to);

View file

@ -10,3 +10,9 @@ beautifulsoup4
requests
newspaper3k
lxml-html-clean
langdetect==1.0.9
transformers==4.43.3
sentencepiece==0.2.0
sacremoses==0.1.1
torch==2.3.1 # CPU. Para GPU ver nota más abajo.
accelerate==0.33.0

472
translation_worker.py Normal file
View file

@ -0,0 +1,472 @@
import os
import time
import logging
import contextlib
from typing import List, Optional
import psycopg2
import psycopg2.extras
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from langdetect import detect, DetectorFactory
DetectorFactory.seed = 0 # resultados reproducibles
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s")
LOG = logging.getLogger(__name__)
# ---------- Config DB ----------
DB_CONFIG = {
"host": os.environ.get("DB_HOST", "localhost"),
"port": int(os.environ.get("DB_PORT", 5432)),
"dbname": os.environ.get("DB_NAME", "rss"),
"user": os.environ.get("DB_USER", "rss"),
"password": os.environ.get("DB_PASS", "x"),
}
# ---------- Helpers ENV (con retrocompatibilidad) ----------
def _env_list(name: str, *fallbacks: str, default: str = "es") -> List[str]:
raw = None
for key in (name, *fallbacks):
raw = os.environ.get(key)
if raw:
break
raw = raw if raw is not None else default
return [s.strip() for s in raw.split(",") if s and s.strip()]
def _env_int(name: str, *fallbacks: str, default: int = 8) -> int:
for key in (name, *fallbacks):
val = os.environ.get(key)
if val:
try:
return int(val)
except ValueError:
pass
return default
def _env_float(name: str, *fallbacks: str, default: float = 5.0) -> float:
for key in (name, *fallbacks):
val = os.environ.get(key)
if val:
try:
return float(val)
except ValueError:
pass
return default
def _env_str(name: str, *fallbacks: str, default: Optional[str] = None) -> Optional[str]:
for key in (name, *fallbacks):
val = os.environ.get(key)
if val:
return val
return default
TARGET_LANGS = _env_list("TARGET_LANGS", "TRANSLATE_TO", default="es")
BATCH_SIZE = _env_int("BATCH", "TRANSLATOR_BATCH", "TRANSLATE_BATCH", default=8)
ENQUEUE_MAX = _env_int("ENQUEUE", "TRANSLATOR_ENQUEUE", "TRANSLATE_ENQUEUE", default=200)
SLEEP_IDLE = _env_float("SLEEP_IDLE", "TRANSLATOR_SLEEP_IDLE", "TRANSLATE_SLEEP_IDLE", default=5.0)
DEVICE_CFG = (_env_str("DEVICE", default="auto") or "auto").lower() # 'cpu' | 'cuda' | 'auto'
# Límites de tokens (ajusta si ves OOM)
MAX_SRC_TOKENS = _env_int("MAX_SRC_TOKENS", default=384)
MAX_NEW_TOKENS = _env_int("MAX_NEW_TOKENS", default=192)
# ---- Beams: por defecto 2 para títulos y 1 para cuerpo; respeta NUM_BEAMS si sólo se define ese ----
def _beams_from_env():
nb_global = os.environ.get("NUM_BEAMS")
has_title = os.environ.get("NUM_BEAMS_TITLE") is not None
has_body = os.environ.get("NUM_BEAMS_BODY") is not None
if nb_global and not has_title and not has_body:
try:
v = max(1, int(nb_global))
return v, v
except ValueError:
pass
# por defecto: 2 (título), 1 (cuerpo)
return _env_int("NUM_BEAMS_TITLE", default=2), _env_int("NUM_BEAMS_BODY", default=1)
NUM_BEAMS_TITLE, NUM_BEAMS_BODY = _beams_from_env()
# Modelo por defecto: NLLB 600M (cámbialo por facebook/nllb-200-1.3B si quieres el 1.3B)
UNIVERSAL_MODEL = _env_str("UNIVERSAL_MODEL", default="facebook/nllb-200-distilled-600M")
# ---------- Mapeo idiomas a códigos NLLB ----------
NLLB_LANG = {
# básicos
"es": "spa_Latn", "en": "eng_Latn", "fr": "fra_Latn", "de": "deu_Latn", "it": "ita_Latn", "pt": "por_Latn",
# nórdicos
"nl": "nld_Latn", "sv": "swe_Latn", "da": "dan_Latn", "fi": "fin_Latn",
# noruego
"no": "nob_Latn", "nb": "nob_Latn", "nn": "nno_Latn",
# CEE
"pl": "pol_Latn", "cs": "ces_Latn", "sk": "slk_Latn", "sl": "slv_Latn",
"hu": "hun_Latn", "ro": "ron_Latn", "bg": "bul_Cyrl", "el": "ell_Grek",
"ru": "rus_Cyrl", "uk": "ukr_Cyrl", "hr": "hrv_Latn", "sr": "srp_Cyrl", "bs": "bos_Latn",
# ME/Asia
"tr": "tur_Latn", "ar": "arb_Arab", "fa": "pes_Arab", "he": "heb_Hebr",
"zh": "zho_Hans", "ja": "jpn_Jpan", "ko": "kor_Hang",
# SEA
"vi": "vie_Latn", "th": "tha_Thai", "id": "ind_Latn", "ms": "zsm_Latn",
# variantes
"pt-br": "por_Latn", "pt-pt": "por_Latn",
}
def map_to_nllb(code: Optional[str]) -> Optional[str]:
if not code:
return None
code = code.strip().lower()
if code in NLLB_LANG:
return NLLB_LANG[code]
return f"{code}_Latn"
def normalize_lang(code: Optional[str], default: Optional[str] = None) -> Optional[str]:
if not code:
return default
code = code.strip().lower()
return code if code else default
# ---------- DB ----------
def get_conn():
return psycopg2.connect(**DB_CONFIG)
def ensure_indexes(conn):
with conn.cursor() as cur:
cur.execute("""
CREATE INDEX IF NOT EXISTS traducciones_lang_to_status_idx
ON traducciones (lang_to, status);
CREATE INDEX IF NOT EXISTS traducciones_status_idx
ON traducciones (status);
""")
conn.commit()
def ensure_pending(conn, lang_to: str, enqueue_limit: int):
with conn.cursor() as cur:
cur.execute("""
INSERT INTO traducciones (noticia_id, lang_from, lang_to, status)
SELECT sub.id, NULL, %s, 'pending'
FROM (
SELECT n.id
FROM noticias n
LEFT JOIN traducciones t
ON t.noticia_id = n.id AND t.lang_to = %s
WHERE t.id IS NULL
ORDER BY n.fecha DESC NULLS LAST, n.id
LIMIT %s
) AS sub;
""", (lang_to, lang_to, enqueue_limit))
conn.commit()
def fetch_pending_batch(conn, lang_to: str, batch_size: int):
with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute("""
SELECT t.id AS tr_id, t.noticia_id, t.lang_from, t.lang_to,
n.titulo, n.resumen
FROM traducciones t
JOIN noticias n ON n.id = t.noticia_id
WHERE t.lang_to = %s AND t.status = 'pending'
ORDER BY t.id
LIMIT %s;
""", (lang_to, batch_size))
rows = cur.fetchall()
if rows:
ids = [r["tr_id"] for r in rows]
with conn.cursor() as cur:
cur.execute("UPDATE traducciones SET status='processing' WHERE id = ANY(%s)", (ids,))
conn.commit()
return rows
def mark_done(conn, tr_id: int, title_tr: str, body_tr: str, lang_from: Optional[str]):
with conn.cursor() as cur:
cur.execute("""
UPDATE traducciones
SET titulo_trad=%s, resumen_trad=%s,
lang_from = COALESCE(lang_from, %s),
status='done', error=NULL
WHERE id=%s;
""", (title_tr, body_tr, lang_from, tr_id))
conn.commit()
def mark_error(conn, tr_id: int, msg: str):
with conn.cursor() as cur:
cur.execute("UPDATE traducciones SET status='error', error=%s WHERE id=%s;", (msg[:1500], tr_id))
conn.commit()
def detect_lang(text1: str, text2: str) -> Optional[str]:
txt = (text1 or "").strip() or (text2 or "").strip()
if not txt:
return None
try:
return detect(txt)
except Exception:
return None
# ---------- Modelo único y manejo de CUDA (NLLB) ----------
_TOKENIZER: Optional[AutoTokenizer] = None
_MODEL: Optional[AutoModelForSeq2SeqLM] = None
_DEVICE: Optional[torch.device] = None
_CUDA_FAILS: int = 0
_CUDA_DISABLED: bool = False
def _resolve_device() -> torch.device:
global _CUDA_DISABLED
if _CUDA_DISABLED:
return torch.device("cpu")
if DEVICE_CFG == "cpu":
return torch.device("cpu")
if DEVICE_CFG == "cuda":
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# auto
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def _is_cuda_mem_error(exc: Exception) -> bool:
s = str(exc)
return ("CUDA out of memory" in s) or ("CUDACachingAllocator" in s) or ("expandable_segment" in s)
def _free_cuda():
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except Exception:
pass
def _load_model_on(device: torch.device):
"""Carga (o recarga) el modelo/tokenizer en el dispositivo indicado."""
global _TOKENIZER, _MODEL, _DEVICE
dtype = torch.float16 if device.type == "cuda" else torch.float32
LOG.info("Cargando modelo universal %s (device=%s, dtype=%s)", UNIVERSAL_MODEL, device, dtype)
tok = AutoTokenizer.from_pretrained(UNIVERSAL_MODEL)
mdl = AutoModelForSeq2SeqLM.from_pretrained(
UNIVERSAL_MODEL,
torch_dtype=dtype,
low_cpu_mem_usage=True
)
# use_cache=False reduce picos de VRAM en generación
try:
mdl.config.use_cache = False
except Exception:
pass
mdl.to(device)
mdl.eval()
_TOKENIZER, _MODEL, _DEVICE = tok, mdl, device
def get_universal_components():
"""Devuelve (tokenizer, model, device). Carga en GPU si está disponible y estable."""
global _TOKENIZER, _MODEL, _DEVICE, _CUDA_FAILS, _CUDA_DISABLED
if _MODEL is not None and _DEVICE is not None:
return _TOKENIZER, _MODEL, _DEVICE
dev = _resolve_device()
try:
_load_model_on(dev)
return _TOKENIZER, _MODEL, _DEVICE
except Exception as e:
LOG.warning("Fallo cargando modelo en %s: %s", dev, e)
if dev.type == "cuda" and _is_cuda_mem_error(e):
_CUDA_FAILS += 1
_CUDA_DISABLED = True
_free_cuda()
LOG.warning("Deshabilitando CUDA y reintentando en CPU (fallos CUDA=%d)", _CUDA_FAILS)
_load_model_on(torch.device("cpu"))
return _TOKENIZER, _MODEL, _DEVICE
_load_model_on(torch.device("cpu"))
return _TOKENIZER, _MODEL, _DEVICE
# ---------- Utilidades ----------
def _token_chunks(tokenizer, text: str, max_tokens: int) -> List[str]:
if not text:
return []
ids = tokenizer.encode(text, add_special_tokens=False)
if len(ids) <= max_tokens:
return [text]
chunks = []
for i in range(0, len(ids), max_tokens):
sub = ids[i:i+max_tokens]
piece = tokenizer.decode(sub, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if piece.strip():
chunks.append(piece.strip())
return chunks
def _norm(s: str) -> str:
import re
return re.sub(r"\W+", "", (s or "").lower()).strip()
def _forced_bos_id(tokenizer: AutoTokenizer, model: AutoModelForSeq2SeqLM, tgt_code: str) -> int:
"""
Resuelve el id del token de idioma destino para NLLB de forma robusta,
funcionando aunque falte `lang_code_to_id` en el tokenizer.
"""
# 1) tokenizer.lang_code_to_id (si existe)
try:
mapping = getattr(tokenizer, "lang_code_to_id", None)
if isinstance(mapping, dict):
tid = mapping.get(tgt_code)
if isinstance(tid, int):
return tid
except Exception:
pass
# 2) model.config.lang_code_to_id (si existe)
try:
mapping = getattr(getattr(model, "config", None), "lang_code_to_id", None)
if isinstance(mapping, dict):
tid = mapping.get(tgt_code)
if isinstance(tid, int):
return tid
except Exception:
pass
# 3) convert_tokens_to_ids (algunos builds registran el código como token especial)
try:
tid = tokenizer.convert_tokens_to_ids(tgt_code)
if isinstance(tid, int) and tid not in (-1, getattr(tokenizer, "unk_token_id", -1)):
return tid
except Exception:
pass
# 4) additional_special_tokens/_ids (buscar el código tal cual)
try:
ats = getattr(tokenizer, "additional_special_tokens", None)
ats_ids = getattr(tokenizer, "additional_special_tokens_ids", None)
if isinstance(ats, list) and isinstance(ats_ids, list) and tgt_code in ats:
idx = ats.index(tgt_code)
if 0 <= idx < len(ats_ids) and isinstance(ats_ids[idx], int):
return ats_ids[idx]
except Exception:
pass
# 5) último recurso: usa eos/bos para no romper generate()
LOG.warning("No pude resolver lang code id para '%s'. Uso fallback (eos/bos).", tgt_code)
return getattr(tokenizer, "eos_token_id", None) or getattr(tokenizer, "bos_token_id", None) or 0
@torch.inference_mode()
def translate_text(src_lang: str, tgt_lang: str, text: str, num_beams: int = 1, _tries: int = 0) -> str:
if not text or not text.strip():
return ""
tok, mdl, device = get_universal_components()
src_code = map_to_nllb(src_lang) or "eng_Latn"
tgt_code = map_to_nllb(tgt_lang) or "spa_Latn"
# Configura idioma origen (si la prop existe)
try:
tok.src_lang = src_code
except Exception:
pass
forced_bos = _forced_bos_id(tok, mdl, tgt_code)
parts = _token_chunks(tok, text, MAX_SRC_TOKENS)
outs: List[str] = []
try:
autocast_ctx = torch.amp.autocast("cuda", dtype=torch.float16) if device.type == "cuda" else contextlib.nullcontext()
for p in parts:
enc = tok(p, return_tensors="pt", truncation=True, max_length=MAX_SRC_TOKENS)
enc = {k: v.to(device) for k, v in enc.items()}
gen_kwargs = dict(
forced_bos_token_id=forced_bos,
max_new_tokens=MAX_NEW_TOKENS,
num_beams=max(1, int(num_beams)),
do_sample=False,
use_cache=False, # ↓ memoria
)
# Evita el warning cuando num_beams = 1
if int(num_beams) > 1:
gen_kwargs["early_stopping"] = True
with autocast_ctx:
generated = mdl.generate(**enc, **gen_kwargs)
out = tok.batch_decode(generated, skip_special_tokens=True)[0].strip()
outs.append(out)
del enc, generated
if device.type == "cuda":
_free_cuda()
return "\n".join([o for o in outs if o]).strip()
except Exception as e:
if device.type == "cuda" and _is_cuda_mem_error(e) and _tries < 2:
LOG.warning("CUDA OOM/allocator: intento de recuperación %d. Detalle: %s", _tries + 1, e)
# desactiva CUDA y relanza en CPU
global _MODEL, _DEVICE, _CUDA_DISABLED
_CUDA_DISABLED = True
try:
if _MODEL is not None:
del _MODEL
except Exception:
pass
_free_cuda()
_MODEL = None
_DEVICE = None
time.sleep(1.0)
return translate_text(src_lang, tgt_lang, text, num_beams=num_beams, _tries=_tries + 1)
raise
def process_batch(conn, rows):
for r in rows:
tr_id = r["tr_id"]
lang_to = normalize_lang(r["lang_to"], "es") or "es"
lang_from = normalize_lang(r["lang_from"]) or detect_lang(r["titulo"] or "", r["resumen"] or "") or "en"
title = (r["titulo"] or "").strip()
body = (r["resumen"] or "").strip()
# Si ya está en el mismo idioma, copia tal cual
if (map_to_nllb(lang_from) or "eng_Latn") == (map_to_nllb(lang_to) or "spa_Latn"):
mark_done(conn, tr_id, title, body, lang_from)
continue
try:
# Beams distintos: mejor calidad en títulos con coste de VRAM controlado
title_tr = translate_text(lang_from, lang_to, title, num_beams=NUM_BEAMS_TITLE) if title else ""
body_tr = translate_text(lang_from, lang_to, body, num_beams=NUM_BEAMS_BODY) if body else ""
# Si la "traducción" es igual al original, déjala vacía
if _norm(title_tr) == _norm(title):
title_tr = ""
if _norm(body_tr) == _norm(body):
body_tr = ""
mark_done(conn, tr_id, title_tr, body_tr, lang_from)
except Exception as e:
LOG.exception("Error traduciendo fila")
mark_error(conn, tr_id, str(e))
def main():
LOG.info(
"Arrancando worker de traducción (NLLB). TARGET_LANGS=%s, BATCH=%s, ENQUEUE=%s, DEVICE=%s, BEAMS(title/body)=%s/%s",
TARGET_LANGS, BATCH_SIZE, ENQUEUE_MAX, DEVICE_CFG, NUM_BEAMS_TITLE, NUM_BEAMS_BODY
)
# Pre-carga el modelo una vez para reservar memoria de forma limpia
get_universal_components()
while True:
any_work = False
with get_conn() as conn:
ensure_indexes(conn)
for lt in TARGET_LANGS:
lt = normalize_lang(lt, "es") or "es"
ensure_pending(conn, lt, ENQUEUE_MAX)
while True:
rows = fetch_pending_batch(conn, lt, BATCH_SIZE)
if not rows:
break
any_work = True
LOG.info("[%s] Procesando %d elementos…", lt, len(rows))
process_batch(conn, rows)
if not any_work:
time.sleep(SLEEP_IDLE)
if __name__ == "__main__":
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
main()