optimizaciones

This commit is contained in:
jlimolina 2025-11-24 02:37:05 +01:00
parent 937da3f90b
commit 86ee083b90
5 changed files with 26 additions and 100 deletions

View file

@ -20,10 +20,10 @@ DB = dict(
password=os.environ.get("DB_PASS", "x"),
)
TOPK = int(os.environ.get("RELATED_TOPK", 10))
BATCH_IDS = int(os.environ.get("RELATED_BATCH_IDS", 200))
SLEEP_IDLE = float(os.environ.get("RELATED_SLEEP", 10))
MIN_SCORE = float(os.environ.get("RELATED_MIN_SCORE", 0.0))
TOPK = int(os.environ.get("RELATED_TOPK", 10))
BATCH_IDS = int(os.environ.get("RELATED_BATCH_IDS", 200))
SLEEP_IDLE = float(os.environ.get("RELATED_SLEEP", 10))
MIN_SCORE = float(os.environ.get("RELATED_MIN_SCORE", 0.0))
WINDOW_HOURS = int(os.environ.get("RELATED_WINDOW_H", 0))
@ -31,9 +31,6 @@ def get_conn():
return psycopg2.connect(**DB)
# ---------------------------------------------------------
# Cargar embeddings SOLO de traducciones en español (lang_to='es')
# ---------------------------------------------------------
def _fetch_all_embeddings(cur):
base_sql = """
SELECT e.traduccion_id, e.vec
@ -49,8 +46,8 @@ def _fetch_all_embeddings(cur):
params.append(f"{WINDOW_HOURS} hours")
cur.execute(base_sql, params)
rows = cur.fetchall()
if not rows:
return [], None
@ -66,10 +63,7 @@ def _fetch_all_embeddings(cur):
if not ids:
return [], None
# Convertimos a matriz numpy
mat = np.array(vecs, dtype=np.float32)
# Normalizamos (evita división por 0)
norms = np.linalg.norm(mat, axis=1, keepdims=True)
norms[norms == 0] = 1e-8
mat = mat / norms
@ -77,9 +71,6 @@ def _fetch_all_embeddings(cur):
return ids, mat
# ---------------------------------------------------------
# Obtiene IDs pendientes
# ---------------------------------------------------------
def _fetch_pending_ids(cur, limit) -> List[int]:
cur.execute(
"""
@ -99,44 +90,24 @@ def _fetch_pending_ids(cur, limit) -> List[int]:
return [r[0] for r in cur.fetchall()]
# ---------------------------------------------------------
# TOP-K usando NumPy (súper rápido)
# ---------------------------------------------------------
def _topk_numpy(
idx: int,
ids_all: List[int],
mat: np.ndarray,
K: int
) -> List[Tuple[int, float]]:
# vector de la noticia central
q = mat[idx] # (dim,)
# similitudes coseno: dot product (matriz · vector)
def _topk_numpy(idx: int, ids_all: List[int], mat: np.ndarray, K: int) -> List[Tuple[int, float]]:
q = mat[idx]
sims = np.dot(mat, q)
# eliminar self-match
sims[idx] = -999.0
# filtramos por score mínimo
if MIN_SCORE > 0:
mask = sims >= MIN_SCORE
sims = np.where(mask, sims, -999.0)
# obtenemos los índices top-k (mucho más rápido que ordenar todo)
if K >= len(sims):
top_idx = np.argsort(-sims)
else:
part = np.argpartition(-sims, K)[:K]
top_idx = part[np.argsort(-sims[part])]
out = [(ids_all[j], float(sims[j])) for j in top_idx[:K]]
return out
return [(ids_all[j], float(sims[j])) for j in top_idx[:K]]
# ---------------------------------------------------------
# Inserta en la tabla related_noticias
# ---------------------------------------------------------
def _insert_related(cur, tr_id: int, pairs: List[Tuple[int, float]]):
if not pairs:
return
@ -152,9 +123,6 @@ def _insert_related(cur, tr_id: int, pairs: List[Tuple[int, float]]):
)
# ---------------------------------------------------------
# Procesar IDs objetivo
# ---------------------------------------------------------
def build_for_ids(conn, target_ids: List[int]) -> int:
with conn.cursor() as cur:
ids_all, mat = _fetch_all_embeddings(cur)
@ -162,7 +130,6 @@ def build_for_ids(conn, target_ids: List[int]) -> int:
if not ids_all or mat is None:
return 0
# Mapa ID → index
pos = {tid: i for i, tid in enumerate(ids_all)}
processed = 0
@ -181,9 +148,6 @@ def build_for_ids(conn, target_ids: List[int]) -> int:
return processed
# ---------------------------------------------------------
# MAIN
# ---------------------------------------------------------
def main():
logging.info(
"Iniciando related_worker (TOPK=%s, BATCH_IDS=%s, MIN_SCORE=%.3f, WINDOW_H=%s)",
@ -192,6 +156,7 @@ def main():
MIN_SCORE,
WINDOW_HOURS,
)
while True:
try:
with get_conn() as conn, conn.cursor() as cur: