// Version 1.73.3 3d-force-graph - https://github.com/vasturiano/3d-force-graph (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.ForceGraph3D = factory()); })(this, (function () { 'use strict'; function styleInject$1(css, ref) { if ( ref === void 0 ) ref = {}; var insertAt = ref.insertAt; if (!css || typeof document === 'undefined') { return; } var head = document.head || document.getElementsByTagName('head')[0]; var style = document.createElement('style'); style.type = 'text/css'; if (insertAt === 'top') { if (head.firstChild) { head.insertBefore(style, head.firstChild); } else { head.appendChild(style); } } else { head.appendChild(style); } if (style.styleSheet) { style.styleSheet.cssText = css; } else { style.appendChild(document.createTextNode(css)); } } var css_248z$1 = ".graph-info-msg {\n top: 50%;\n width: 100%;\n text-align: center;\n color: lavender;\n opacity: 0.7;\n font-size: 22px;\n position: absolute;\n font-family: Sans-serif;\n}\n\n.scene-container .clickable {\n cursor: pointer;\n}\n\n.scene-container .grabbable {\n cursor: move;\n cursor: grab;\n cursor: -moz-grab;\n cursor: -webkit-grab;\n}\n\n.scene-container .grabbable:active {\n cursor: grabbing;\n cursor: -moz-grabbing;\n cursor: -webkit-grabbing;\n}"; styleInject$1(css_248z$1); function ownKeys$2(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; } function _objectSpread2$2(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys$2(Object(t), !0).forEach(function (r) { _defineProperty$3(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys$2(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } function _toPrimitive$5(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey$5(t) { var i = _toPrimitive$5(t, "string"); return "symbol" == typeof i ? i : i + ""; } function _defineProperty$3(obj, key, value) { key = _toPropertyKey$5(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _toConsumableArray$4(arr) { return _arrayWithoutHoles$4(arr) || _iterableToArray$4(arr) || _unsupportedIterableToArray$5(arr) || _nonIterableSpread$4(); } function _arrayWithoutHoles$4(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$5(arr); } function _iterableToArray$4(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$5(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$5(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$5(o, minLen); } function _arrayLikeToArray$5(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$4() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } /** * @license * Copyright 2010-2023 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = '162'; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const ConstantColorFactor = 211; const OneMinusConstantColorFactor = 212; const ConstantAlphaFactor = 213; const OneMinusConstantAlphaFactor = 214; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const AgXToneMapping = 6; const NeutralToneMapping = 7; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const AlphaFormat = 1021; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const RGB_BPTC_SIGNED_Format = 36494; const RGB_BPTC_UNSIGNED_Format = 36495; const RED_RGTC1_Format = 36283; const SIGNED_RED_RGTC1_Format = 36284; const RED_GREEN_RGTC2_Format = 36285; const SIGNED_RED_GREEN_RGTC2_Format = 36286; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. const NoColorSpace = ''; const SRGBColorSpace = 'srgb'; const LinearSRGBColorSpace = 'srgb-linear'; const DisplayP3ColorSpace = 'display-p3'; const LinearDisplayP3ColorSpace = 'display-p3-linear'; const LinearTransfer = 'linear'; const SRGBTransfer = 'srgb'; const Rec709Primaries = 'rec709'; const P3Primaries = 'p3'; const KeepStencilOp = 7680; const AlwaysStencilFunc = 519; const NeverCompare = 512; const LessCompare = 513; const EqualCompare = 514; const LessEqualCompare = 515; const GreaterCompare = 516; const NotEqualCompare = 517; const GreaterEqualCompare = 518; const AlwaysCompare = 519; const StaticDrawUsage = 35044; const GLSL3 = '300 es'; const _SRGBAFormat = 1035; // fallback for WebGL 1 const WebGLCoordinateSystem = 2000; const WebGPUCoordinateSystem = 2001; /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== - 1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } function clamp( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range to range function mapLinear( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp( x, y, value ) { if ( x !== y ) { return ( value - x ) / ( y - x ); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp( x, y, t ) { return ( 1 - t ) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp( x, y, lambda, dt ) { return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong( x, length = 1 ) { return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); } function smootherstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); } // Random integer from interval function randInt( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); } // Random float from interval function randFloat( low, high ) { return low + Math.random() * ( high - low ); } // Random float from <-range/2, range/2> interval function randFloatSpread( range ) { return range * ( 0.5 - Math.random() ); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom( s ) { if ( s !== undefined ) _seed = s; // Mulberry32 generator let t = _seed += 0x6D2B79F5; t = Math.imul( t ^ t >>> 15, t | 1 ); t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; } function degToRad( degrees ) { return degrees * DEG2RAD; } function radToDeg( radians ) { return radians * RAD2DEG; } function isPowerOfTwo( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } function ceilPowerOfTwo( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); } function floorPowerOfTwo( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); } function setQuaternionFromProperEuler( q, a, b, c, order ) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos( b / 2 ); const s2 = sin( b / 2 ); const c13 = cos( ( a + c ) / 2 ); const s13 = sin( ( a + c ) / 2 ); const c1_3 = cos( ( a - c ) / 2 ); const s1_3 = sin( ( a - c ) / 2 ); const c3_1 = cos( ( c - a ) / 2 ); const s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } function denormalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return value / 4294967295.0; case Uint16Array: return value / 65535.0; case Uint8Array: return value / 255.0; case Int32Array: return Math.max( value / 2147483647.0, - 1.0 ); case Int16Array: return Math.max( value / 32767.0, - 1.0 ); case Int8Array: return Math.max( value / 127.0, - 1.0 ); default: throw new Error( 'Invalid component type.' ); } } function normalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return Math.round( value * 4294967295.0 ); case Uint16Array: return Math.round( value * 65535.0 ); case Uint8Array: return Math.round( value * 255.0 ); case Int32Array: return Math.round( value * 2147483647.0 ); case Int16Array: return Math.round( value * 32767.0 ); case Int8Array: return Math.round( value * 127.0 ); default: throw new Error( 'Invalid component type.' ); } } const MathUtils = { DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler, normalize: normalize, denormalize: denormalize }; class Vector2 { constructor( x = 0, y = 0 ) { Vector2.prototype.isVector2 = true; this.x = x; this.y = y; } get width() { return this.x; } set width( value ) { this.x = value; } get height() { return this.y; } set height( value ) { this.y = value; } set( x, y ) { this.x = x; this.y = y; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y ); } copy( v ) { this.x = v.x; this.y = v.y; return this; } add( v ) { this.x += v.x; this.y += v.y; return this; } addScalar( s ) { this.x += s; this.y += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; return this; } subScalar( s ) { this.x -= s; this.y -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; return this; } divide( v ) { this.x /= v.x; this.y /= v.y; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } applyMatrix3( m ) { const x = this.x, y = this.y; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); return this; } negate() { this.x = - this.x; this.y = - this.y; return this; } dot( v ) { return this.x * v.x + this.y * v.y; } cross( v ) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt( this.x * this.x + this.y * this.y ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ); } normalize() { return this.divideScalar( this.length() || 1 ); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2( - this.y, - this.x ) + Math.PI; return angle; } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp( theta, - 1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; } rotateAround( center, angle ) { const c = Math.cos( angle ), s = Math.sin( angle ); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; } } class Matrix3 { constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { Matrix3.prototype.isMatrix3 = true; this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ); } } set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { const te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; } identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; } setFromMatrix4( m ) { const me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; } determinant() { const te = this.elements; const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; } getNormalMatrix( matrix4 ) { return this.setFromMatrix4( matrix4 ).invert().transpose(); } transposeIntoArray( r ) { const m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { const c = Math.cos( rotation ); const s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); return this; } // scale( sx, sy ) { this.premultiply( _m3.makeScale( sx, sy ) ); return this; } rotate( theta ) { this.premultiply( _m3.makeRotation( - theta ) ); return this; } translate( tx, ty ) { this.premultiply( _m3.makeTranslation( tx, ty ) ); return this; } // for 2D Transforms makeTranslation( x, y ) { if ( x.isVector2 ) { this.set( 1, 0, x.x, 0, 1, x.y, 0, 0, 1 ); } else { this.set( 1, 0, x, 0, 1, y, 0, 0, 1 ); } return this; } makeRotation( theta ) { // counterclockwise const c = Math.cos( theta ); const s = Math.sin( theta ); this.set( c, - s, 0, s, c, 0, 0, 0, 1 ); return this; } makeScale( x, y ) { this.set( x, 0, 0, 0, y, 0, 0, 0, 1 ); return this; } // equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } clone() { return new this.constructor().fromArray( this.elements ); } } const _m3 = /*@__PURE__*/ new Matrix3(); function arrayNeedsUint32( array ) { // assumes larger values usually on last for ( let i = array.length - 1; i >= 0; -- i ) { if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565 } return false; } function createElementNS( name ) { return document.createElementNS( 'http://www.w3.org/1999/xhtml', name ); } function createCanvasElement() { const canvas = createElementNS( 'canvas' ); canvas.style.display = 'block'; return canvas; } const _cache = {}; function warnOnce( message ) { if ( message in _cache ) return; _cache[ message ] = true; console.warn( message ); } /** * Matrices converting P3 <-> Rec. 709 primaries, without gamut mapping * or clipping. Based on W3C specifications for sRGB and Display P3, * and ICC specifications for the D50 connection space. Values in/out * are _linear_ sRGB and _linear_ Display P3. * * Note that both sRGB and Display P3 use the sRGB transfer functions. * * Reference: * - http://www.russellcottrell.com/photo/matrixCalculator.htm */ const LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = /*@__PURE__*/ new Matrix3().set( 0.8224621, 0.177538, 0.0, 0.0331941, 0.9668058, 0.0, 0.0170827, 0.0723974, 0.9105199, ); const LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = /*@__PURE__*/ new Matrix3().set( 1.2249401, - 0.2249404, 0.0, - 0.0420569, 1.0420571, 0.0, - 0.0196376, - 0.0786361, 1.0982735 ); /** * Defines supported color spaces by transfer function and primaries, * and provides conversions to/from the Linear-sRGB reference space. */ const COLOR_SPACES = { [ LinearSRGBColorSpace ]: { transfer: LinearTransfer, primaries: Rec709Primaries, toReference: ( color ) => color, fromReference: ( color ) => color, }, [ SRGBColorSpace ]: { transfer: SRGBTransfer, primaries: Rec709Primaries, toReference: ( color ) => color.convertSRGBToLinear(), fromReference: ( color ) => color.convertLinearToSRGB(), }, [ LinearDisplayP3ColorSpace ]: { transfer: LinearTransfer, primaries: P3Primaries, toReference: ( color ) => color.applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ), fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ), }, [ DisplayP3ColorSpace ]: { transfer: SRGBTransfer, primaries: P3Primaries, toReference: ( color ) => color.convertSRGBToLinear().applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ), fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ).convertLinearToSRGB(), }, }; const SUPPORTED_WORKING_COLOR_SPACES = new Set( [ LinearSRGBColorSpace, LinearDisplayP3ColorSpace ] ); const ColorManagement = { enabled: true, _workingColorSpace: LinearSRGBColorSpace, get workingColorSpace() { return this._workingColorSpace; }, set workingColorSpace( colorSpace ) { if ( ! SUPPORTED_WORKING_COLOR_SPACES.has( colorSpace ) ) { throw new Error( `Unsupported working color space, "${ colorSpace }".` ); } this._workingColorSpace = colorSpace; }, convert: function ( color, sourceColorSpace, targetColorSpace ) { if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) { return color; } const sourceToReference = COLOR_SPACES[ sourceColorSpace ].toReference; const targetFromReference = COLOR_SPACES[ targetColorSpace ].fromReference; return targetFromReference( sourceToReference( color ) ); }, fromWorkingColorSpace: function ( color, targetColorSpace ) { return this.convert( color, this._workingColorSpace, targetColorSpace ); }, toWorkingColorSpace: function ( color, sourceColorSpace ) { return this.convert( color, sourceColorSpace, this._workingColorSpace ); }, getPrimaries: function ( colorSpace ) { return COLOR_SPACES[ colorSpace ].primaries; }, getTransfer: function ( colorSpace ) { if ( colorSpace === NoColorSpace ) return LinearTransfer; return COLOR_SPACES[ colorSpace ].transfer; }, }; function SRGBToLinear( c ) { return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); } function LinearToSRGB( c ) { return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; } let _canvas; class ImageUtils { static getDataURL( image ) { if ( /^data:/i.test( image.src ) ) { return image.src; } if ( typeof HTMLCanvasElement === 'undefined' ) { return image.src; } let canvas; if ( image instanceof HTMLCanvasElement ) { canvas = image; } else { if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' ); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext( '2d' ); if ( image instanceof ImageData ) { context.putImageData( image, 0, 0 ); } else { context.drawImage( image, 0, 0, image.width, image.height ); } canvas = _canvas; } if ( canvas.width > 2048 || canvas.height > 2048 ) { console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image ); return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } static sRGBToLinear( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { const canvas = createElementNS( 'canvas' ); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height ); const imageData = context.getImageData( 0, 0, image.width, image.height ); const data = imageData.data; for ( let i = 0; i < data.length; i ++ ) { data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255; } context.putImageData( imageData, 0, 0 ); return canvas; } else if ( image.data ) { const data = image.data.slice( 0 ); for ( let i = 0; i < data.length; i ++ ) { if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) { data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 ); } else { // assuming float data[ i ] = SRGBToLinear( data[ i ] ); } } return { data: data, width: image.width, height: image.height }; } else { console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' ); return image; } } } let _sourceId = 0; class Source { constructor( data = null ) { this.isSource = true; Object.defineProperty( this, 'id', { value: _sourceId ++ } ); this.uuid = generateUUID(); this.data = data; this.dataReady = true; this.version = 0; } set needsUpdate( value ) { if ( value === true ) this.version ++; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) { return meta.images[ this.uuid ]; } const output = { uuid: this.uuid, url: '' }; const data = this.data; if ( data !== null ) { let url; if ( Array.isArray( data ) ) { // cube texture url = []; for ( let i = 0, l = data.length; i < l; i ++ ) { if ( data[ i ].isDataTexture ) { url.push( serializeImage( data[ i ].image ) ); } else { url.push( serializeImage( data[ i ] ) ); } } } else { // texture url = serializeImage( data ); } output.url = url; } if ( ! isRootObject ) { meta.images[ this.uuid ] = output; } return output; } } function serializeImage( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { // default images return ImageUtils.getDataURL( image ); } else { if ( image.data ) { // images of DataTexture return { data: Array.from( image.data ), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn( 'THREE.Texture: Unable to serialize Texture.' ); return {}; } } } let _textureId = 0; class Texture extends EventDispatcher { constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) { super(); this.isTexture = true; Object.defineProperty( this, 'id', { value: _textureId ++ } ); this.uuid = generateUUID(); this.name = ''; this.source = new Source( image ); this.mipmaps = []; this.mapping = mapping; this.channel = 0; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) this.colorSpace = colorSpace; this.userData = {}; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not this.needsPMREMUpdate = false; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures) } get image() { return this.source.data; } set image( value = null ) { this.source.data = value; } updateMatrix() { this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.source = source.source; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.channel = source.channel; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.colorSpace = source.colorSpace; this.userData = JSON.parse( JSON.stringify( source.userData ) ); this.needsUpdate = true; return this; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } const output = { metadata: { version: 4.6, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, image: this.source.toJSON( meta ).uuid, mapping: this.mapping, channel: this.channel, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation, wrap: [ this.wrapS, this.wrapT ], format: this.format, internalFormat: this.internalFormat, type: this.type, colorSpace: this.colorSpace, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, generateMipmaps: this.generateMipmaps, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData; if ( ! isRootObject ) { meta.textures[ this.uuid ] = output; } return output; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } transformUv( uv ) { if ( this.mapping !== UVMapping ) return uv; uv.applyMatrix3( this.matrix ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } return uv; } set needsUpdate( value ) { if ( value === true ) { this.version ++; this.source.needsUpdate = true; } } } Texture.DEFAULT_IMAGE = null; Texture.DEFAULT_MAPPING = UVMapping; Texture.DEFAULT_ANISOTROPY = 1; class Vector4 { constructor( x = 0, y = 0, z = 0, w = 1 ) { Vector4.prototype.isVector4 = true; this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width( value ) { this.z = value; } get height() { return this.w; } set height( value ) { this.w = value; } set( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setW( w ) { this.w = w; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z, this.w ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } setAxisAngleFromQuaternion( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); const s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = ( m11 + 1 ) / 2; const yy = ( m22 + 1 ) / 2; const zz = ( m33 + 1 ) / 2; const xy = ( m12 + m21 ) / 4; const xz = ( m13 + m31 ) / 4; const yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); this.w = Math.trunc( this.w ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; yield this.w; } } /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class RenderTarget extends EventDispatcher { constructor( width = 1, height = 1, options = {} ) { super(); this.isRenderTarget = true; this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); const image = { width: width, height: height, depth: 1 }; options = Object.assign( { generateMipmaps: false, internalFormat: null, minFilter: LinearFilter, depthBuffer: true, stencilBuffer: false, depthTexture: null, samples: 0, count: 1 }, options ); const texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace ); texture.flipY = false; texture.generateMipmaps = options.generateMipmaps; texture.internalFormat = options.internalFormat; this.textures = []; const count = options.count; for ( let i = 0; i < count; i ++ ) { this.textures[ i ] = texture.clone(); this.textures[ i ].isRenderTargetTexture = true; } this.depthBuffer = options.depthBuffer; this.stencilBuffer = options.stencilBuffer; this.depthTexture = options.depthTexture; this.samples = options.samples; } get texture() { return this.textures[ 0 ]; } set texture( value ) { this.textures[ 0 ] = value; } setSize( width, height, depth = 1 ) { if ( this.width !== width || this.height !== height || this.depth !== depth ) { this.width = width; this.height = height; this.depth = depth; for ( let i = 0, il = this.textures.length; i < il; i ++ ) { this.textures[ i ].image.width = width; this.textures[ i ].image.height = height; this.textures[ i ].image.depth = depth; } this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.scissor.copy( source.scissor ); this.scissorTest = source.scissorTest; this.viewport.copy( source.viewport ); this.textures.length = 0; for ( let i = 0, il = source.textures.length; i < il; i ++ ) { this.textures[ i ] = source.textures[ i ].clone(); this.textures[ i ].isRenderTargetTexture = true; } // ensure image object is not shared, see #20328 const image = Object.assign( {}, source.texture.image ); this.texture.source = new Source( image ); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone(); this.samples = source.samples; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } class WebGLRenderTarget extends RenderTarget { constructor( width = 1, height = 1, options = {} ) { super( width, height, options ); this.isWebGLRenderTarget = true; } } class DataArrayTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { super( null ); this.isDataArrayTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class Data3DTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super( null ); this.isData3DTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class Quaternion { constructor( x = 0, y = 0, z = 0, w = 1 ) { this.isQuaternion = true; this._x = x; this._y = y; this._z = z; this._w = w; } static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( t === 0 ) { dst[ dstOffset + 0 ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; return; } if ( t === 1 ) { dst[ dstOffset + 0 ] = x1; dst[ dstOffset + 1 ] = y1; dst[ dstOffset + 2 ] = z1; dst[ dstOffset + 3 ] = w1; return; } if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { const sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { const x0 = src0[ srcOffset0 ]; const y0 = src0[ srcOffset0 + 1 ]; const z0 = src0[ srcOffset0 + 2 ]; const w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 ]; const y1 = src1[ srcOffset1 + 1 ]; const z1 = src1[ srcOffset1 + 2 ]; const w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w( value ) { this._w = value; this._onChangeCallback(); } set( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._w ); } copy( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler( euler, update = true ) { const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos( x / 2 ); const c2 = cos( y / 2 ); const c3 = cos( z / 2 ); const s1 = sin( x / 2 ); const s2 = sin( y / 2 ); const s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update === true ) this._onChangeCallback(); return this; } setFromAxisAngle( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; } setFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { const s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot( vTo ) + 1; if ( r < Number.EPSILON ) { // vFrom and vTo point in opposite directions r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo( q ) { return 2 * Math.acos( Math.abs( clamp( this.dot( q ), - 1, 1 ) ) ); } rotateTowards( q, step ) { const angle = this.angleTo( q ); if ( angle === 0 ) return this; const t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; } identity() { return this.set( 0, 0, 0, 1 ); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= - 1; this._y *= - 1; this._z *= - 1; this._onChangeCallback(); return this; } dot( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); } normalize() { let l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply( q ) { return this.multiplyQuaternions( this, q ); } premultiply( q ) { return this.multiplyQuaternions( q, this ); } multiplyQuaternions( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); // normalize calls _onChangeCallback() return this; } const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; } slerpQuaternions( qa, qb, t ) { return this.copy( qa ).slerp( qb, t ); } random() { // sets this quaternion to a uniform random unit quaternnion // Ken Shoemake // Uniform random rotations // D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992. const theta1 = 2 * Math.PI * Math.random(); const theta2 = 2 * Math.PI * Math.random(); const x0 = Math.random(); const r1 = Math.sqrt( 1 - x0 ); const r2 = Math.sqrt( x0 ); return this.set( r1 * Math.sin( theta1 ), r1 * Math.cos( theta1 ), r2 * Math.sin( theta2 ), r2 * Math.cos( theta2 ), ); } equals( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); } fromArray( array, offset = 0 ) { this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; } fromBufferAttribute( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); this._onChangeCallback(); return this; } toJSON() { return this.toArray(); } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._w; } } class Vector3 { constructor( x = 0, y = 0, z = 0 ) { Vector3.prototype.isVector3 = true; this.x = x; this.y = y; this.z = z; } set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler( euler ) { return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); } applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); } applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } applyQuaternion( q ) { // quaternion q is assumed to have unit length const vx = this.x, vy = this.y, vz = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // t = 2 * cross( q.xyz, v ); const tx = 2 * ( qy * vz - qz * vy ); const ty = 2 * ( qz * vx - qx * vz ); const tz = 2 * ( qx * vy - qy * vx ); // v + q.w * t + cross( q.xyz, t ); this.x = vx + qw * tx + qy * tz - qz * ty; this.y = vy + qw * ty + qz * tx - qx * tz; this.z = vz + qw * tz + qx * ty - qy * tx; return this; } project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } cross( v ) { return this.crossVectors( this, v ); } crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } projectOnPlane( planeNormal ) { _vector$c.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector$c ); } reflect( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp( theta, - 1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } setFromEuler( e ) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } setFromColor( c ) { this.x = c.r; this.y = c.g; this.z = c.b; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { // https://mathworld.wolfram.com/SpherePointPicking.html const theta = Math.random() * Math.PI * 2; const u = Math.random() * 2 - 1; const c = Math.sqrt( 1 - u * u ); this.x = c * Math.cos( theta ); this.y = u; this.z = c * Math.sin( theta ); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; } } const _vector$c = /*@__PURE__*/ new Vector3(); const _quaternion$4 = /*@__PURE__*/ new Quaternion(); class Box3 { constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { this.isBox3 = true; this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromArray( array ) { this.makeEmpty(); for ( let i = 0, il = array.length; i < il; i += 3 ) { this.expandByPoint( _vector$b.fromArray( array, i ) ); } return this; } setFromBufferAttribute( attribute ) { this.makeEmpty(); for ( let i = 0, il = attribute.count; i < il; i ++ ) { this.expandByPoint( _vector$b.fromBufferAttribute( attribute, i ) ); } return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } setFromObject( object, precise = false ) { this.makeEmpty(); return this.expandByObject( object, precise ); } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } expandByObject( object, precise = false ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { const positionAttribute = geometry.getAttribute( 'position' ); // precise AABB computation based on vertex data requires at least a position attribute. // instancing isn't supported so far and uses the normal (conservative) code path. if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) { for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) { if ( object.isMesh === true ) { object.getVertexPosition( i, _vector$b ); } else { _vector$b.fromBufferAttribute( positionAttribute, i ); } _vector$b.applyMatrix4( object.matrixWorld ); this.expandByPoint( _vector$b ); } } else { if ( object.boundingBox !== undefined ) { // object-level bounding box if ( object.boundingBox === null ) { object.computeBoundingBox(); } _box$4.copy( object.boundingBox ); } else { // geometry-level bounding box if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box$4.copy( geometry.boundingBox ); } _box$4.applyMatrix4( object.matrixWorld ); this.union( _box$4 ); } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ], precise ); } return this; } containsPoint( point ) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true; } intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector$b ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0$2.subVectors( triangle.a, _center ); _v1$7.subVectors( triangle.b, _center ); _v2$4.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1$7, _v0$2 ); _f1.subVectors( _v2$4, _v1$7 ); _f2.subVectors( _v0$2, _v2$4 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0$2, _v1$7, _v2$4, _extents ); } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { return this.clampPoint( point, _vector$b ).distanceTo( point ); } getBoundingSphere( target ) { if ( this.isEmpty() ) { target.makeEmpty(); } else { this.getCenter( target.center ); target.radius = this.getSize( _vector$b ).length() * 0.5; } return target; } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector$b = /*@__PURE__*/ new Vector3(); const _box$4 = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0$2 = /*@__PURE__*/ new Vector3(); const _v1$7 = /*@__PURE__*/ new Vector3(); const _v2$4 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the separating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the separating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is separating and we can exit return false; } } return true; } const _box$3 = /*@__PURE__*/ new Box3(); const _v1$6 = /*@__PURE__*/ new Vector3(); const _v2$3 = /*@__PURE__*/ new Vector3(); class Sphere { constructor( center = new Vector3(), radius = - 1 ) { this.isSphere = true; this.center = center; this.radius = radius; } set( center, radius ) { this.center.copy( center ); this.radius = radius; return this; } setFromPoints( points, optionalCenter ) { const center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { _box$3.setFromPoints( points ).getCenter( center ); } let maxRadiusSq = 0; for ( let i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; } copy( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; } isEmpty() { return ( this.radius < 0 ); } makeEmpty() { this.center.set( 0, 0, 0 ); this.radius = - 1; return this; } containsPoint( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); } distanceToPoint( point ) { return ( point.distanceTo( this.center ) - this.radius ); } intersectsSphere( sphere ) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); } intersectsBox( box ) { return box.intersectsSphere( this ); } intersectsPlane( plane ) { return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; } clampPoint( point, target ) { const deltaLengthSq = this.center.distanceToSquared( point ); target.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center ); } return target; } getBoundingBox( target ) { if ( this.isEmpty() ) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set( this.center, this.center ); target.expandByScalar( this.radius ); return target; } applyMatrix4( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate( offset ) { this.center.add( offset ); return this; } expandByPoint( point ) { if ( this.isEmpty() ) { this.center.copy( point ); this.radius = 0; return this; } _v1$6.subVectors( point, this.center ); const lengthSq = _v1$6.lengthSq(); if ( lengthSq > ( this.radius * this.radius ) ) { // calculate the minimal sphere const length = Math.sqrt( lengthSq ); const delta = ( length - this.radius ) * 0.5; this.center.addScaledVector( _v1$6, delta / length ); this.radius += delta; } return this; } union( sphere ) { if ( sphere.isEmpty() ) { return this; } if ( this.isEmpty() ) { this.copy( sphere ); return this; } if ( this.center.equals( sphere.center ) === true ) { this.radius = Math.max( this.radius, sphere.radius ); } else { _v2$3.subVectors( sphere.center, this.center ).setLength( sphere.radius ); this.expandByPoint( _v1$6.copy( sphere.center ).add( _v2$3 ) ); this.expandByPoint( _v1$6.copy( sphere.center ).sub( _v2$3 ) ); } return this; } equals( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } clone() { return new this.constructor().copy( this ); } } const _vector$a = /*@__PURE__*/ new Vector3(); const _segCenter = /*@__PURE__*/ new Vector3(); const _segDir = /*@__PURE__*/ new Vector3(); const _diff$1 = /*@__PURE__*/ new Vector3(); const _edge1 = /*@__PURE__*/ new Vector3(); const _edge2 = /*@__PURE__*/ new Vector3(); const _normal$1 = /*@__PURE__*/ new Vector3(); class Ray { constructor( origin = new Vector3(), direction = new Vector3( 0, 0, - 1 ) ) { this.origin = origin; this.direction = direction; } set( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; } copy( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; } at( t, target ) { return target.copy( this.origin ).addScaledVector( this.direction, t ); } lookAt( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; } recast( t ) { this.origin.copy( this.at( t, _vector$a ) ); return this; } closestPointToPoint( point, target ) { target.subVectors( point, this.origin ); const directionDistance = target.dot( this.direction ); if ( directionDistance < 0 ) { return target.copy( this.origin ); } return target.copy( this.origin ).addScaledVector( this.direction, directionDistance ); } distanceToPoint( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); } distanceSqToPoint( point ) { const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } _vector$a.copy( this.origin ).addScaledVector( this.direction, directionDistance ); return _vector$a.distanceToSquared( point ); } distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); _segDir.copy( v1 ).sub( v0 ).normalize(); _diff$1.copy( this.origin ).sub( _segCenter ); const segExtent = v0.distanceTo( v1 ) * 0.5; const a01 = - this.direction.dot( _segDir ); const b0 = _diff$1.dot( this.direction ); const b1 = - _diff$1.dot( _segDir ); const c = _diff$1.lengthSq(); const det = Math.abs( 1 - a01 * a01 ); let s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.origin ).addScaledVector( this.direction, s0 ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( _segCenter ).addScaledVector( _segDir, s1 ); } return sqrDist; } intersectSphere( sphere, target ) { _vector$a.subVectors( sphere.center, this.origin ); const tca = _vector$a.dot( this.direction ); const d2 = _vector$a.dot( _vector$a ) - tca * tca; const radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; const thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if t1 is behind the ray - if so, return null if ( t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, target ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target ); } intersectsSphere( sphere ) { return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); } distanceToPlane( plane ) { const denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane( plane, target ) { const t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, target ); } intersectsPlane( plane ) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } const denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox( box, target ) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; if ( tymin > tmin || isNaN( tmin ) ) tmin = tymin; if ( tymax < tmax || isNaN( tmax ) ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, target ); } intersectsBox( box ) { return this.intersectBox( box, _vector$a ) !== null; } intersectTriangle( a, b, c, backfaceCulling, target ) { // Compute the offset origin, edges, and normal. // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors( b, a ); _edge2.subVectors( c, a ); _normal$1.crossVectors( _edge1, _edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot( _normal$1 ); let sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = - 1; DdN = - DdN; } else { return null; } _diff$1.subVectors( this.origin, a ); const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff$1, _edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff$1 ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. const QdN = - sign * _diff$1.dot( _normal$1 ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, target ); } applyMatrix4( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; } equals( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } clone() { return new this.constructor().copy( this ); } } class Matrix4 { constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { Matrix4.prototype.isMatrix4 = true; this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ); } } set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { const te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; } identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } clone() { return new Matrix4().fromArray( this.elements ); } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; } copyPosition( m ) { const te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; } setFromMatrix3( m ) { const me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], 0, me[ 1 ], me[ 4 ], me[ 7 ], 0, me[ 2 ], me[ 5 ], me[ 8 ], 0, 0, 0, 0, 1 ); return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; } makeBasis( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } extractRotation( m ) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromEuler( euler ) { const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos( x ), b = Math.sin( x ); const c = Math.cos( y ), d = Math.sin( y ); const e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromQuaternion( q ) { return this.compose( _zero, q, _one ); } lookAt( eye, target, up ) { const te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; } determinant() { const te = this.elements; const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); } transpose() { const te = this.elements; let tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; } setPosition( x, y, z ) { const te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; } scale( v ) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); } makeTranslation( x, y, z ) { if ( x.isVector3 ) { this.set( 1, 0, 0, x.x, 0, 1, 0, x.y, 0, 0, 1, x.z, 0, 0, 0, 1 ); } else { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); } return this; } makeRotationX( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } makeRotationY( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; } makeRotationZ( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } makeRotationAxis( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos( angle ); const s = Math.sin( angle ); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } makeScale( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } makeShear( xy, xz, yx, yz, zx, zy ) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } compose( position, quaternion, scale ) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; } decompose( position, quaternion, scale ) { const te = this.elements; let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1$4.copy( this ); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$4.elements[ 0 ] *= invSX; _m1$4.elements[ 1 ] *= invSX; _m1$4.elements[ 2 ] *= invSX; _m1$4.elements[ 4 ] *= invSY; _m1$4.elements[ 5 ] *= invSY; _m1$4.elements[ 6 ] *= invSY; _m1$4.elements[ 8 ] *= invSZ; _m1$4.elements[ 9 ] *= invSZ; _m1$4.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1$4 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const x = 2 * near / ( right - left ); const y = 2 * near / ( top - bottom ); const a = ( right + left ) / ( right - left ); const b = ( top + bottom ) / ( top - bottom ); let c, d; if ( coordinateSystem === WebGLCoordinateSystem ) { c = - ( far + near ) / ( far - near ); d = ( - 2 * far * near ) / ( far - near ); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { c = - far / ( far - near ); d = ( - far * near ) / ( far - near ); } else { throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; } makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const w = 1.0 / ( right - left ); const h = 1.0 / ( top - bottom ); const p = 1.0 / ( far - near ); const x = ( right + left ) * w; const y = ( top + bottom ) * h; let z, zInv; if ( coordinateSystem === WebGLCoordinateSystem ) { z = ( far + near ) * p; zInv = - 2 * p; } else if ( coordinateSystem === WebGPUCoordinateSystem ) { z = near * p; zInv = - 1 * p; } else { throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } const _v1$5 = /*@__PURE__*/ new Vector3(); const _m1$4 = /*@__PURE__*/ new Matrix4(); const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); const _x = /*@__PURE__*/ new Vector3(); const _y = /*@__PURE__*/ new Vector3(); const _z = /*@__PURE__*/ new Vector3(); const _matrix$2 = /*@__PURE__*/ new Matrix4(); const _quaternion$3 = /*@__PURE__*/ new Quaternion(); class Euler { constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) { this.isEuler = true; this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order( value ) { this._order = value; this._onChangeCallback(); } set( x, y, z, order = this._order ) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._order ); } copy( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix( m, order = this._order, update = true ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; switch ( order ) { case 'XYZ': this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } break; case 'YXZ': this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.9999999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } break; case 'ZXY': this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.9999999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } break; case 'ZYX': this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.9999999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } break; case 'YZX': this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } break; case 'XZY': this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.9999999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } break; default: console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); } this._order = order; if ( update === true ) this._onChangeCallback(); return this; } setFromQuaternion( q, order, update ) { _matrix$2.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( _matrix$2, order, update ); } setFromVector3( v, order = this._order ) { return this.set( v.x, v.y, v.z, order ); } reorder( newOrder ) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler( this ); return this.setFromQuaternion( _quaternion$3, newOrder ); } equals( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); } fromArray( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._order; } } Euler.DEFAULT_ORDER = 'XYZ'; class Layers { constructor() { this.mask = 1 | 0; } set( channel ) { this.mask = ( 1 << channel | 0 ) >>> 0; } enable( channel ) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle( channel ) { this.mask ^= 1 << channel | 0; } disable( channel ) { this.mask &= ~ ( 1 << channel | 0 ); } disableAll() { this.mask = 0; } test( layers ) { return ( this.mask & layers.mask ) !== 0; } isEnabled( channel ) { return ( this.mask & ( 1 << channel | 0 ) ) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/ new Vector3(); const _q1 = /*@__PURE__*/ new Quaternion(); const _m1$3 = /*@__PURE__*/ new Matrix4(); const _target = /*@__PURE__*/ new Vector3(); const _position$3 = /*@__PURE__*/ new Vector3(); const _scale$2 = /*@__PURE__*/ new Vector3(); const _quaternion$2 = /*@__PURE__*/ new Quaternion(); const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); const _addedEvent = { type: 'added' }; const _removedEvent = { type: 'removed' }; const _childaddedEvent = { type: 'childadded', child: null }; const _childremovedEvent = { type: 'childremoved', child: null }; class Object3D extends EventDispatcher { constructor() { super(); this.isObject3D = true; Object.defineProperty( this, 'id', { value: _object3DId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DEFAULT_UP.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation._onChange( onRotationChange ); quaternion._onChange( onQuaternionChange ); Object.defineProperties( this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE; this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} onAfterShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {} onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {} applyMatrix4( matrix ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); this.matrix.premultiply( matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); } applyQuaternion( q ) { this.quaternion.premultiply( q ); return this; } setRotationFromAxisAngle( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); } setRotationFromEuler( euler ) { this.quaternion.setFromEuler( euler, true ); } setRotationFromMatrix( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); } setRotationFromQuaternion( q ) { // assumes q is normalized this.quaternion.copy( q ); } rotateOnAxis( axis, angle ) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( _q1 ); return this; } rotateOnWorldAxis( axis, angle ) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle( axis, angle ); this.quaternion.premultiply( _q1 ); return this; } rotateX( angle ) { return this.rotateOnAxis( _xAxis, angle ); } rotateY( angle ) { return this.rotateOnAxis( _yAxis, angle ); } rotateZ( angle ) { return this.rotateOnAxis( _zAxis, angle ); } translateOnAxis( axis, distance ) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( _v1$4.multiplyScalar( distance ) ); return this; } translateX( distance ) { return this.translateOnAxis( _xAxis, distance ); } translateY( distance ) { return this.translateOnAxis( _yAxis, distance ); } translateZ( distance ) { return this.translateOnAxis( _zAxis, distance ); } localToWorld( vector ) { this.updateWorldMatrix( true, false ); return vector.applyMatrix4( this.matrixWorld ); } worldToLocal( vector ) { this.updateWorldMatrix( true, false ); return vector.applyMatrix4( _m1$3.copy( this.matrixWorld ).invert() ); } lookAt( x, y, z ) { // This method does not support objects having non-uniformly-scaled parent(s) if ( x.isVector3 ) { _target.copy( x ); } else { _target.set( x, y, z ); } const parent = this.parent; this.updateWorldMatrix( true, false ); _position$3.setFromMatrixPosition( this.matrixWorld ); if ( this.isCamera || this.isLight ) { _m1$3.lookAt( _position$3, _target, this.up ); } else { _m1$3.lookAt( _target, _position$3, this.up ); } this.quaternion.setFromRotationMatrix( _m1$3 ); if ( parent ) { _m1$3.extractRotation( parent.matrixWorld ); _q1.setFromRotationMatrix( _m1$3 ); this.quaternion.premultiply( _q1.invert() ); } } add( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); return this; } if ( object && object.isObject3D ) { if ( object.parent !== null ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); object.dispatchEvent( _addedEvent ); _childaddedEvent.child = object; this.dispatchEvent( _childaddedEvent ); _childaddedEvent.child = null; } else { console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); } return this; } remove( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } const index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = null; this.children.splice( index, 1 ); object.dispatchEvent( _removedEvent ); _childremovedEvent.child = object; this.dispatchEvent( _childremovedEvent ); _childremovedEvent.child = null; } return this; } removeFromParent() { const parent = this.parent; if ( parent !== null ) { parent.remove( this ); } return this; } clear() { return this.remove( ... this.children ); } attach( object ) { // adds object as a child of this, while maintaining the object's world transform // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) this.updateWorldMatrix( true, false ); _m1$3.copy( this.matrixWorld ).invert(); if ( object.parent !== null ) { object.parent.updateWorldMatrix( true, false ); _m1$3.multiply( object.parent.matrixWorld ); } object.applyMatrix4( _m1$3 ); this.add( object ); object.updateWorldMatrix( false, true ); return this; } getObjectById( id ) { return this.getObjectByProperty( 'id', id ); } getObjectByName( name ) { return this.getObjectByProperty( 'name', name ); } getObjectByProperty( name, value ) { if ( this[ name ] === value ) return this; for ( let i = 0, l = this.children.length; i < l; i ++ ) { const child = this.children[ i ]; const object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; } getObjectsByProperty( name, value, result = [] ) { if ( this[ name ] === value ) result.push( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].getObjectsByProperty( name, value, result ); } return result; } getWorldPosition( target ) { this.updateWorldMatrix( true, false ); return target.setFromMatrixPosition( this.matrixWorld ); } getWorldQuaternion( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, target, _scale$2 ); return target; } getWorldScale( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, _quaternion$2, target ); return target; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); } raycast( /* raycaster, intersects */ ) {} traverse( callback ) { callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } } traverseVisible( callback ) { if ( this.visible === false ) return; callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } } traverseAncestors( callback ) { const parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } } updateMatrix() { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld( force ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const child = children[ i ]; if ( child.matrixWorldAutoUpdate === true || force === true ) { child.updateMatrixWorld( force ); } } } updateWorldMatrix( updateParents, updateChildren ) { const parent = this.parent; if ( updateParents === true && parent !== null && parent.matrixWorldAutoUpdate === true ) { parent.updateWorldMatrix( true, false ); } if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } // update children if ( updateChildren === true ) { const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const child = children[ i ]; if ( child.matrixWorldAutoUpdate === true ) { child.updateWorldMatrix( false, true ); } } } } toJSON( meta ) { // meta is a string when called from JSON.stringify const isRootObject = ( meta === undefined || typeof meta === 'string' ); const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {}, nodes: {} }; output.metadata = { version: 4.6, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; if ( this.frustumCulled === false ) object.frustumCulled = false; if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); object.up = this.up.toArray(); if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; // object specific properties if ( this.isInstancedMesh ) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); } if ( this.isBatchedMesh ) { object.type = 'BatchedMesh'; object.perObjectFrustumCulled = this.perObjectFrustumCulled; object.sortObjects = this.sortObjects; object.drawRanges = this._drawRanges; object.reservedRanges = this._reservedRanges; object.visibility = this._visibility; object.active = this._active; object.bounds = this._bounds.map( bound => ( { boxInitialized: bound.boxInitialized, boxMin: bound.box.min.toArray(), boxMax: bound.box.max.toArray(), sphereInitialized: bound.sphereInitialized, sphereRadius: bound.sphere.radius, sphereCenter: bound.sphere.center.toArray() } ) ); object.maxGeometryCount = this._maxGeometryCount; object.maxVertexCount = this._maxVertexCount; object.maxIndexCount = this._maxIndexCount; object.geometryInitialized = this._geometryInitialized; object.geometryCount = this._geometryCount; object.matricesTexture = this._matricesTexture.toJSON( meta ); if ( this.boundingSphere !== null ) { object.boundingSphere = { center: object.boundingSphere.center.toArray(), radius: object.boundingSphere.radius }; } if ( this.boundingBox !== null ) { object.boundingBox = { min: object.boundingBox.min.toArray(), max: object.boundingBox.max.toArray() }; } } // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.isScene ) { if ( this.background ) { if ( this.background.isColor ) { object.background = this.background.toJSON(); } else if ( this.background.isTexture ) { object.background = this.background.toJSON( meta ).uuid; } } if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) { object.environment = this.environment.toJSON( meta ).uuid; } } else if ( this.isMesh || this.isLine || this.isPoints ) { object.geometry = serialize( meta.geometries, this.geometry ); const parameters = this.geometry.parameters; if ( parameters !== undefined && parameters.shapes !== undefined ) { const shapes = parameters.shapes; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; serialize( meta.shapes, shape ); } } else { serialize( meta.shapes, shapes ); } } } if ( this.isSkinnedMesh ) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if ( this.skeleton !== undefined ) { serialize( meta.skeletons, this.skeleton ); object.skeleton = this.skeleton.uuid; } } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { const uuids = []; for ( let i = 0, l = this.material.length; i < l; i ++ ) { uuids.push( serialize( meta.materials, this.material[ i ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( let i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } // if ( this.animations.length > 0 ) { object.animations = []; for ( let i = 0; i < this.animations.length; i ++ ) { const animation = this.animations[ i ]; object.animations.push( serialize( meta.animations, animation ) ); } } if ( isRootObject ) { const geometries = extractFromCache( meta.geometries ); const materials = extractFromCache( meta.materials ); const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const shapes = extractFromCache( meta.shapes ); const skeletons = extractFromCache( meta.skeletons ); const animations = extractFromCache( meta.animations ); const nodes = extractFromCache( meta.nodes ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; if ( shapes.length > 0 ) output.shapes = shapes; if ( skeletons.length > 0 ) output.skeletons = skeletons; if ( animations.length > 0 ) output.animations = animations; if ( nodes.length > 0 ) output.nodes = nodes; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } } clone( recursive ) { return new this.constructor().copy( this, recursive ); } copy( source, recursive = true ) { this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.rotation.order = source.rotation.order; this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.animations = source.animations.slice(); this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( let i = 0; i < source.children.length; i ++ ) { const child = source.children[ i ]; this.add( child.clone() ); } } return this; } } Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 ); Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true; Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true; const _v0$1 = /*@__PURE__*/ new Vector3(); const _v1$3 = /*@__PURE__*/ new Vector3(); const _v2$2 = /*@__PURE__*/ new Vector3(); const _v3$2 = /*@__PURE__*/ new Vector3(); const _vab = /*@__PURE__*/ new Vector3(); const _vac = /*@__PURE__*/ new Vector3(); const _vbc = /*@__PURE__*/ new Vector3(); const _vap = /*@__PURE__*/ new Vector3(); const _vbp = /*@__PURE__*/ new Vector3(); const _vcp = /*@__PURE__*/ new Vector3(); class Triangle { constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { this.a = a; this.b = b; this.c = c; } static getNormal( a, b, c, target ) { target.subVectors( c, b ); _v0$1.subVectors( a, b ); target.cross( _v0$1 ); const targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord( point, a, b, c, target ) { _v0$1.subVectors( c, a ); _v1$3.subVectors( b, a ); _v2$2.subVectors( point, a ); const dot00 = _v0$1.dot( _v0$1 ); const dot01 = _v0$1.dot( _v1$3 ); const dot02 = _v0$1.dot( _v2$2 ); const dot11 = _v1$3.dot( _v1$3 ); const dot12 = _v1$3.dot( _v2$2 ); const denom = ( dot00 * dot11 - dot01 * dot01 ); // collinear or singular triangle if ( denom === 0 ) { target.set( 0, 0, 0 ); return null; } const invDenom = 1 / denom; const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); } static containsPoint( point, a, b, c ) { // if the triangle is degenerate then we can't contain a point if ( this.getBarycoord( point, a, b, c, _v3$2 ) === null ) { return false; } return ( _v3$2.x >= 0 ) && ( _v3$2.y >= 0 ) && ( ( _v3$2.x + _v3$2.y ) <= 1 ); } static getInterpolation( point, p1, p2, p3, v1, v2, v3, target ) { if ( this.getBarycoord( point, p1, p2, p3, _v3$2 ) === null ) { target.x = 0; target.y = 0; if ( 'z' in target ) target.z = 0; if ( 'w' in target ) target.w = 0; return null; } target.setScalar( 0 ); target.addScaledVector( v1, _v3$2.x ); target.addScaledVector( v2, _v3$2.y ); target.addScaledVector( v3, _v3$2.z ); return target; } static isFrontFacing( a, b, c, direction ) { _v0$1.subVectors( c, b ); _v1$3.subVectors( a, b ); // strictly front facing return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; } set( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; } setFromPointsAndIndices( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; } setFromAttributeAndIndices( attribute, i0, i1, i2 ) { this.a.fromBufferAttribute( attribute, i0 ); this.b.fromBufferAttribute( attribute, i1 ); this.c.fromBufferAttribute( attribute, i2 ); return this; } clone() { return new this.constructor().copy( this ); } copy( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; } getArea() { _v0$1.subVectors( this.c, this.b ); _v1$3.subVectors( this.a, this.b ); return _v0$1.cross( _v1$3 ).length() * 0.5; } getMidpoint( target ) { return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); } getNormal( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); } getPlane( target ) { return target.setFromCoplanarPoints( this.a, this.b, this.c ); } getBarycoord( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); } getInterpolation( point, v1, v2, v3, target ) { return Triangle.getInterpolation( point, this.a, this.b, this.c, v1, v2, v3, target ); } containsPoint( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); } isFrontFacing( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); } intersectsBox( box ) { return box.intersectsTriangle( this ); } closestPointToPoint( p, target ) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); const d1 = _vab.dot( _vap ); const d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); const d3 = _vab.dot( _vbp ); const d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } const vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); const d5 = _vab.dot( _vcp ); const d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } const vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } const va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region const denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); } equals( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } class Color { constructor( r, g, b ) { this.isColor = true; this.r = 1; this.g = 1; this.b = 1; return this.set( r, g, b ); } set( r, g, b ) { if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string const value = r; if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } } else { this.setRGB( r, g, b ); } return this; } setScalar( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex( hex, colorSpace = SRGBColorSpace ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) { this.r = r; this.g = g; this.b = b; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo( h, 1 ); s = clamp( s, 0, 1 ); l = clamp( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); const q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setStyle( style, colorSpace = SRGBColorSpace ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } let m; if ( m = /^(\w+)\(([^\)]*)\)/.exec( style ) ) { // rgb / hsl let color; const name = m[ 1 ]; const components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) handleAlpha( color[ 4 ] ); return this.setRGB( Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255, Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255, Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255, colorSpace ); } if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) handleAlpha( color[ 4 ] ); return this.setRGB( Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100, Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100, Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100, colorSpace ); } break; case 'hsl': case 'hsla': if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) handleAlpha( color[ 4 ] ); return this.setHSL( parseFloat( color[ 1 ] ) / 360, parseFloat( color[ 2 ] ) / 100, parseFloat( color[ 3 ] ) / 100, colorSpace ); } break; default: console.warn( 'THREE.Color: Unknown color model ' + style ); } } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { // hex color const hex = m[ 1 ]; const size = hex.length; if ( size === 3 ) { // #ff0 return this.setRGB( parseInt( hex.charAt( 0 ), 16 ) / 15, parseInt( hex.charAt( 1 ), 16 ) / 15, parseInt( hex.charAt( 2 ), 16 ) / 15, colorSpace ); } else if ( size === 6 ) { // #ff0000 return this.setHex( parseInt( hex, 16 ), colorSpace ); } else { console.warn( 'THREE.Color: Invalid hex color ' + style ); } } else if ( style && style.length > 0 ) { return this.setColorName( style, colorSpace ); } return this; } setColorName( style, colorSpace = SRGBColorSpace ) { // color keywords const hex = _colorKeywords[ style.toLowerCase() ]; if ( hex !== undefined ) { // red this.setHex( hex, colorSpace ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } return this; } clone() { return new this.constructor( this.r, this.g, this.b ); } copy( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copySRGBToLinear( color ) { this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b ); return this; } copyLinearToSRGB( color ) { this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b ); return this; } convertSRGBToLinear() { this.copySRGBToLinear( this ); return this; } convertLinearToSRGB() { this.copyLinearToSRGB( this ); return this; } getHex( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); return Math.round( clamp( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp( _color.b * 255, 0, 255 ) ); } getHexString( colorSpace = SRGBColorSpace ) { return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( - 6 ); } getHSL( target, colorSpace = ColorManagement.workingColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); const r = _color.r, g = _color.g, b = _color.b; const max = Math.max( r, g, b ); const min = Math.min( r, g, b ); let hue, saturation; const lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getRGB( target, colorSpace = ColorManagement.workingColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); target.r = _color.r; target.g = _color.g; target.b = _color.b; return target; } getStyle( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); const r = _color.r, g = _color.g, b = _color.b; if ( colorSpace !== SRGBColorSpace ) { // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`; } return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`; } offsetHSL( h, s, l ) { this.getHSL( _hslA ); return this.setHSL( _hslA.h + h, _hslA.s + s, _hslA.l + l ); } add( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar( s ) { this.r += s; this.g += s; this.b += s; return this; } sub( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; } multiply( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar( s ) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; } lerpColors( color1, color2, alpha ) { this.r = color1.r + ( color2.r - color1.r ) * alpha; this.g = color1.g + ( color2.g - color1.g ) * alpha; this.b = color1.b + ( color2.b - color1.b ) * alpha; return this; } lerpHSL( color, alpha ) { this.getHSL( _hslA ); color.getHSL( _hslB ); const h = lerp( _hslA.h, _hslB.h, alpha ); const s = lerp( _hslA.s, _hslB.s, alpha ); const l = lerp( _hslA.l, _hslB.l, alpha ); this.setHSL( h, s, l ); return this; } setFromVector3( v ) { this.r = v.x; this.g = v.y; this.b = v.z; return this; } applyMatrix3( m ) { const r = this.r, g = this.g, b = this.b; const e = m.elements; this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b; this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b; this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b; return this; } equals( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); } fromArray( array, offset = 0 ) { this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } fromBufferAttribute( attribute, index ) { this.r = attribute.getX( index ); this.g = attribute.getY( index ); this.b = attribute.getZ( index ); return this; } toJSON() { return this.getHex(); } *[ Symbol.iterator ]() { yield this.r; yield this.g; yield this.b; } } const _color = /*@__PURE__*/ new Color(); Color.NAMES = _colorKeywords; let _materialId = 0; class Material extends EventDispatcher { constructor() { super(); this.isMaterial = true; Object.defineProperty( this, 'id', { value: _materialId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Material'; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.alphaHash = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.blendColor = new Color( 0, 0, 0 ); this.blendAlpha = 0; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.forceSinglePass = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest( value ) { if ( this._alphaTest > 0 !== value > 0 ) { this.version ++; } this._alphaTest = value; } onBuild( /* shaderobject, renderer */ ) {} onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {} onBeforeCompile( /* shaderobject, renderer */ ) {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues( values ) { if ( values === undefined ) return; for ( const key in values ) { const newValue = values[ key ]; if ( newValue === undefined ) { console.warn( `THREE.Material: parameter '${ key }' has value of undefined.` ); continue; } const currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( `THREE.Material: '${ key }' is not a property of THREE.${ this.type }.` ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else { this[ key ] = newValue; } } } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( isRootObject ) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.6, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color && this.color.isColor ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( this.sheen !== undefined ) data.sheen = this.sheen; if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex(); if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness; if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.emissiveIntensity !== undefined && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity; if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity; if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat; if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness; if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; } if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; } if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if ( this.iridescence !== undefined ) data.iridescence = this.iridescence; if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR; if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange; if ( this.iridescenceMap && this.iridescenceMap.isTexture ) { data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid; } if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) { data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid; } if ( this.anisotropy !== undefined ) data.anisotropy = this.anisotropy; if ( this.anisotropyRotation !== undefined ) data.anisotropyRotation = this.anisotropyRotation; if ( this.anisotropyMap && this.anisotropyMap.isTexture ) { data.anisotropyMap = this.anisotropyMap.toJSON( meta ).uuid; } if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; data.lightMapIntensity = this.lightMapIntensity; } if ( this.aoMap && this.aoMap.isTexture ) { data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity; } if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid; if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid; if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; if ( this.combine !== undefined ) data.combine = this.combine; } if ( this.envMapRotation !== undefined ) data.envMapRotation = this.envMapRotation.toArray(); if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity; if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity; if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio; if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.transmission !== undefined ) data.transmission = this.transmission; if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid; if ( this.thickness !== undefined ) data.thickness = this.thickness; if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid; if ( this.attenuationDistance !== undefined && this.attenuationDistance !== Infinity ) data.attenuationDistance = this.attenuationDistance; if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex(); if ( this.size !== undefined ) data.size = this.size; if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors === true ) data.vertexColors = true; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = true; if ( this.blendSrc !== SrcAlphaFactor ) data.blendSrc = this.blendSrc; if ( this.blendDst !== OneMinusSrcAlphaFactor ) data.blendDst = this.blendDst; if ( this.blendEquation !== AddEquation ) data.blendEquation = this.blendEquation; if ( this.blendSrcAlpha !== null ) data.blendSrcAlpha = this.blendSrcAlpha; if ( this.blendDstAlpha !== null ) data.blendDstAlpha = this.blendDstAlpha; if ( this.blendEquationAlpha !== null ) data.blendEquationAlpha = this.blendEquationAlpha; if ( this.blendColor && this.blendColor.isColor ) data.blendColor = this.blendColor.getHex(); if ( this.blendAlpha !== 0 ) data.blendAlpha = this.blendAlpha; if ( this.depthFunc !== LessEqualDepth ) data.depthFunc = this.depthFunc; if ( this.depthTest === false ) data.depthTest = this.depthTest; if ( this.depthWrite === false ) data.depthWrite = this.depthWrite; if ( this.colorWrite === false ) data.colorWrite = this.colorWrite; if ( this.stencilWriteMask !== 0xff ) data.stencilWriteMask = this.stencilWriteMask; if ( this.stencilFunc !== AlwaysStencilFunc ) data.stencilFunc = this.stencilFunc; if ( this.stencilRef !== 0 ) data.stencilRef = this.stencilRef; if ( this.stencilFuncMask !== 0xff ) data.stencilFuncMask = this.stencilFuncMask; if ( this.stencilFail !== KeepStencilOp ) data.stencilFail = this.stencilFail; if ( this.stencilZFail !== KeepStencilOp ) data.stencilZFail = this.stencilZFail; if ( this.stencilZPass !== KeepStencilOp ) data.stencilZPass = this.stencilZPass; if ( this.stencilWrite === true ) data.stencilWrite = this.stencilWrite; // rotation (SpriteMaterial) if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation; if ( this.polygonOffset === true ) data.polygonOffset = true; if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits; if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth; if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; if ( this.scale !== undefined ) data.scale = this.scale; if ( this.dithering === true ) data.dithering = true; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.alphaHash === true ) data.alphaHash = true; if ( this.alphaToCoverage === true ) data.alphaToCoverage = true; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = true; if ( this.forceSinglePass === true ) data.forceSinglePass = true; if ( this.wireframe === true ) data.wireframe = true; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; if ( this.flatShading === true ) data.flatShading = true; if ( this.visible === false ) data.visible = false; if ( this.toneMapped === false ) data.toneMapped = false; if ( this.fog === false ) data.fog = false; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRootObject ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.blendColor.copy( source.blendColor ); this.blendAlpha = source.blendAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if ( srcPlanes !== null ) { const n = srcPlanes.length; dstPlanes = new Array( n ); for ( let i = 0; i !== n; ++ i ) { dstPlanes[ i ] = srcPlanes[ i ].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaHash = source.alphaHash; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.forceSinglePass = source.forceSinglePass; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse( JSON.stringify( source.userData ) ); return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } set needsUpdate( value ) { if ( value === true ) this.version ++; } } class MeshBasicMaterial extends Material { constructor( parameters ) { super(); this.isMeshBasicMaterial = true; this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } const _vector$9 = /*@__PURE__*/ new Vector3(); const _vector2$1 = /*@__PURE__*/ new Vector2(); class BufferAttribute { constructor( array, itemSize, normalized = false ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.isBufferAttribute = true; this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized; this.usage = StaticDrawUsage; this._updateRange = { offset: 0, count: - 1 }; this.updateRanges = []; this.gpuType = FloatType; this.version = 0; } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } get updateRange() { warnOnce( 'THREE.BufferAttribute: updateRange() is deprecated and will be removed in r169. Use addUpdateRange() instead.' ); // @deprecated, r159 return this._updateRange; } setUsage( value ) { this.usage = value; return this; } addUpdateRange( start, count ) { this.updateRanges.push( { start, count } ); } clearUpdateRanges() { this.updateRanges.length = 0; } copy( source ) { this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; this.gpuType = source.gpuType; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( let i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } copyArray( array ) { this.array.set( array ); return this; } applyMatrix3( m ) { if ( this.itemSize === 2 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector2$1.fromBufferAttribute( this, i ); _vector2$1.applyMatrix3( m ); this.setXY( i, _vector2$1.x, _vector2$1.y ); } } else if ( this.itemSize === 3 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix3( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } } return this; } applyMatrix4( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix4( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyNormalMatrix( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.transformDirection( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } set( value, offset = 0 ) { // Matching BufferAttribute constructor, do not normalize the array. this.array.set( value, offset ); return this; } getComponent( index, component ) { let value = this.array[ index * this.itemSize + component ]; if ( this.normalized ) value = denormalize( value, this.array ); return value; } setComponent( index, component, value ) { if ( this.normalized ) value = normalize( value, this.array ); this.array[ index * this.itemSize + component ] = value; return this; } getX( index ) { let x = this.array[ index * this.itemSize ]; if ( this.normalized ) x = denormalize( x, this.array ); return x; } setX( index, x ) { if ( this.normalized ) x = normalize( x, this.array ); this.array[ index * this.itemSize ] = x; return this; } getY( index ) { let y = this.array[ index * this.itemSize + 1 ]; if ( this.normalized ) y = denormalize( y, this.array ); return y; } setY( index, y ) { if ( this.normalized ) y = normalize( y, this.array ); this.array[ index * this.itemSize + 1 ] = y; return this; } getZ( index ) { let z = this.array[ index * this.itemSize + 2 ]; if ( this.normalized ) z = denormalize( z, this.array ); return z; } setZ( index, z ) { if ( this.normalized ) z = normalize( z, this.array ); this.array[ index * this.itemSize + 2 ] = z; return this; } getW( index ) { let w = this.array[ index * this.itemSize + 3 ]; if ( this.normalized ) w = denormalize( w, this.array ); return w; } setW( index, w ) { if ( this.normalized ) w = normalize( w, this.array ); this.array[ index * this.itemSize + 3 ] = w; return this; } setXY( index, x, y ) { index *= this.itemSize; if ( this.normalized ) { x = normalize( x, this.array ); y = normalize( y, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index *= this.itemSize; if ( this.normalized ) { x = normalize( x, this.array ); y = normalize( y, this.array ); z = normalize( z, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index *= this.itemSize; if ( this.normalized ) { x = normalize( x, this.array ); y = normalize( y, this.array ); z = normalize( z, this.array ); w = normalize( w, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; } onUpload( callback ) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor( this.array, this.itemSize ).copy( this ); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.from( this.array ), normalized: this.normalized }; if ( this.name !== '' ) data.name = this.name; if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; return data; } } class Uint16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); } } class Uint32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint32Array( array ), itemSize, normalized ); } } class Float32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Float32Array( array ), itemSize, normalized ); } } let _id$2 = 0; const _m1$2 = /*@__PURE__*/ new Matrix4(); const _obj = /*@__PURE__*/ new Object3D(); const _offset$1 = /*@__PURE__*/ new Vector3(); const _box$2 = /*@__PURE__*/ new Box3(); const _boxMorphTargets = /*@__PURE__*/ new Box3(); const _vector$8 = /*@__PURE__*/ new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); this.isBufferGeometry = true; Object.defineProperty( this, 'id', { value: _id$2 ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } return this; } getAttribute( name ) { return this.attributes[ name ]; } setAttribute( name, attribute ) { this.attributes[ name ] = attribute; return this; } deleteAttribute( name ) { delete this.attributes[ name ]; return this; } hasAttribute( name ) { return this.attributes[ name ] !== undefined; } addGroup( start, count, materialIndex = 0 ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); } clearGroups() { this.groups = []; } setDrawRange( start, count ) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4( matrix ) { const position = this.attributes.position; if ( position !== undefined ) { position.applyMatrix4( matrix ); position.needsUpdate = true; } const normal = this.attributes.normal; if ( normal !== undefined ) { const normalMatrix = new Matrix3().getNormalMatrix( matrix ); normal.applyNormalMatrix( normalMatrix ); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if ( tangent !== undefined ) { tangent.transformDirection( matrix ); tangent.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; } applyQuaternion( q ) { _m1$2.makeRotationFromQuaternion( q ); this.applyMatrix4( _m1$2 ); return this; } rotateX( angle ) { // rotate geometry around world x-axis _m1$2.makeRotationX( angle ); this.applyMatrix4( _m1$2 ); return this; } rotateY( angle ) { // rotate geometry around world y-axis _m1$2.makeRotationY( angle ); this.applyMatrix4( _m1$2 ); return this; } rotateZ( angle ) { // rotate geometry around world z-axis _m1$2.makeRotationZ( angle ); this.applyMatrix4( _m1$2 ); return this; } translate( x, y, z ) { // translate geometry _m1$2.makeTranslation( x, y, z ); this.applyMatrix4( _m1$2 ); return this; } scale( x, y, z ) { // scale geometry _m1$2.makeScale( x, y, z ); this.applyMatrix4( _m1$2 ); return this; } lookAt( vector ) { _obj.lookAt( vector ); _obj.updateMatrix(); this.applyMatrix4( _obj.matrix ); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter( _offset$1 ).negate(); this.translate( _offset$1.x, _offset$1.y, _offset$1.z ); return this; } setFromPoints( points ) { const position = []; for ( let i = 0, l = points.length; i < l; i ++ ) { const point = points[ i ]; position.push( point.x, point.y, point.z || 0 ); } this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); return this; } computeBoundingBox() { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.', this ); this.boundingBox.set( new Vector3( - Infinity, - Infinity, - Infinity ), new Vector3( + Infinity, + Infinity, + Infinity ) ); return; } if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _box$2.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( this.boundingBox.min, _box$2.min ); this.boundingBox.expandByPoint( _vector$8 ); _vector$8.addVectors( this.boundingBox.max, _box$2.max ); this.boundingBox.expandByPoint( _vector$8 ); } else { this.boundingBox.expandByPoint( _box$2.min ); this.boundingBox.expandByPoint( _box$2.max ); } } } } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } } computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.', this ); this.boundingSphere.set( new Vector3(), Infinity ); return; } if ( position ) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$2.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _boxMorphTargets.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( _box$2.min, _boxMorphTargets.min ); _box$2.expandByPoint( _vector$8 ); _vector$8.addVectors( _box$2.max, _boxMorphTargets.max ); _box$2.expandByPoint( _vector$8 ); } else { _box$2.expandByPoint( _boxMorphTargets.min ); _box$2.expandByPoint( _boxMorphTargets.max ); } } } _box$2.getCenter( center ); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for ( let i = 0, il = position.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( position, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; const morphTargetsRelative = this.morphTargetsRelative; for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) { _vector$8.fromBufferAttribute( morphAttribute, j ); if ( morphTargetsRelative ) { _offset$1.fromBufferAttribute( position, j ); _vector$8.add( _offset$1 ); } maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } } } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined ) { console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' ); return; } const positionAttribute = attributes.position; const normalAttribute = attributes.normal; const uvAttribute = attributes.uv; if ( this.hasAttribute( 'tangent' ) === false ) { this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * positionAttribute.count ), 4 ) ); } const tangentAttribute = this.getAttribute( 'tangent' ); const tan1 = [], tan2 = []; for ( let i = 0; i < positionAttribute.count; i ++ ) { tan1[ i ] = new Vector3(); tan2[ i ] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle( a, b, c ) { vA.fromBufferAttribute( positionAttribute, a ); vB.fromBufferAttribute( positionAttribute, b ); vC.fromBufferAttribute( positionAttribute, c ); uvA.fromBufferAttribute( uvAttribute, a ); uvB.fromBufferAttribute( uvAttribute, b ); uvC.fromBufferAttribute( uvAttribute, c ); vB.sub( vA ); vC.sub( vA ); uvB.sub( uvA ); uvC.sub( uvA ); const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y ); // silently ignore degenerate uv triangles having coincident or colinear vertices if ( ! isFinite( r ) ) return; sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r ); tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } let groups = this.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: index.count } ]; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleTriangle( index.getX( j + 0 ), index.getX( j + 1 ), index.getX( j + 2 ) ); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex( v ) { n.fromBufferAttribute( normalAttribute, v ); n2.copy( n ); const t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( n2, t ); const test = tmp2.dot( tan2[ v ] ); const w = ( test < 0.0 ) ? - 1.0 : 1.0; tangentAttribute.setXYZW( v, tmp.x, tmp.y, tmp.z, w ); } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleVertex( index.getX( j + 0 ) ); handleVertex( index.getX( j + 1 ) ); handleVertex( index.getX( j + 2 ) ); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute( 'position' ); if ( positionAttribute !== undefined ) { let normalAttribute = this.getAttribute( 'normal' ); if ( normalAttribute === undefined ) { normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); this.setAttribute( 'normal', normalAttribute ); } else { // reset existing normals to zero for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) { normalAttribute.setXYZ( i, 0, 0, 0 ); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { for ( let i = 0, il = index.count; i < il; i += 3 ) { const vA = index.getX( i + 0 ); const vB = index.getX( i + 1 ); const vC = index.getX( i + 2 ); pA.fromBufferAttribute( positionAttribute, vA ); pB.fromBufferAttribute( positionAttribute, vB ); pC.fromBufferAttribute( positionAttribute, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); nA.fromBufferAttribute( normalAttribute, vA ); nB.fromBufferAttribute( normalAttribute, vB ); nC.fromBufferAttribute( normalAttribute, vC ); nA.add( cb ); nB.add( cb ); nC.add( cb ); normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); } } else { // non-indexed elements (unconnected triangle soup) for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) { pA.fromBufferAttribute( positionAttribute, i + 0 ); pB.fromBufferAttribute( positionAttribute, i + 1 ); pC.fromBufferAttribute( positionAttribute, i + 2 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z ); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } normalizeNormals() { const normals = this.attributes.normal; for ( let i = 0, il = normals.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( normals, i ); _vector$8.normalize(); normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z ); } } toNonIndexed() { function convertBufferAttribute( attribute, indices ) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor( indices.length * itemSize ); let index = 0, index2 = 0; for ( let i = 0, l = indices.length; i < l; i ++ ) { if ( attribute.isInterleavedBufferAttribute ) { index = indices[ i ] * attribute.data.stride + attribute.offset; } else { index = indices[ i ] * itemSize; } for ( let j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } return new BufferAttribute( array2, itemSize, normalized ); } // if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' ); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for ( const name in attributes ) { const attribute = attributes[ name ]; const newAttribute = convertBufferAttribute( attribute, indices ); geometry2.setAttribute( name, newAttribute ); } // morph attributes const morphAttributes = this.morphAttributes; for ( const name in morphAttributes ) { const morphArray = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const attribute = morphAttribute[ i ]; const newAttribute = convertBufferAttribute( attribute, indices ); morphArray.push( newAttribute ); } geometry2.morphAttributes[ name ] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; geometry2.addGroup( group.start, group.count, group.materialIndex ); } return geometry2; } toJSON() { const data = { metadata: { version: 4.6, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; if ( this.parameters !== undefined ) { const parameters = this.parameters; for ( const key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if ( index !== null ) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call( index.array ) }; } const attributes = this.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; data.data.attributes[ key ] = attribute.toJSON( data.data ); } const morphAttributes = {}; let hasMorphAttributes = false; for ( const key in this.morphAttributes ) { const attributeArray = this.morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; array.push( attribute.toJSON( data.data ) ); } if ( array.length > 0 ) { morphAttributes[ key ] = array; hasMorphAttributes = true; } } if ( hasMorphAttributes ) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } const boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if ( index !== null ) { this.setIndex( index.clone( data ) ); } // attributes const attributes = source.attributes; for ( const name in attributes ) { const attribute = attributes[ name ]; this.setAttribute( name, attribute.clone( data ) ); } // morph attributes const morphAttributes = source.morphAttributes; for ( const name in morphAttributes ) { const array = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone( data ) ); } this.morphAttributes[ name ] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box const boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } const _inverseMatrix$3 = /*@__PURE__*/ new Matrix4(); const _ray$3 = /*@__PURE__*/ new Ray(); const _sphere$6 = /*@__PURE__*/ new Sphere(); const _sphereHitAt = /*@__PURE__*/ new Vector3(); const _vA$1 = /*@__PURE__*/ new Vector3(); const _vB$1 = /*@__PURE__*/ new Vector3(); const _vC$1 = /*@__PURE__*/ new Vector3(); const _tempA = /*@__PURE__*/ new Vector3(); const _morphA = /*@__PURE__*/ new Vector3(); const _uvA$1 = /*@__PURE__*/ new Vector2(); const _uvB$1 = /*@__PURE__*/ new Vector2(); const _uvC$1 = /*@__PURE__*/ new Vector2(); const _normalA = /*@__PURE__*/ new Vector3(); const _normalB = /*@__PURE__*/ new Vector3(); const _normalC = /*@__PURE__*/ new Vector3(); const _intersectionPoint = /*@__PURE__*/ new Vector3(); const _intersectionPointWorld = /*@__PURE__*/ new Vector3(); class Mesh extends Object3D { constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) { super(); this.isMesh = true; this.type = 'Mesh'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); if ( source.morphTargetInfluences !== undefined ) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if ( source.morphTargetDictionary !== undefined ) { this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); } this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } getVertexPosition( index, target ) { const geometry = this.geometry; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; target.fromBufferAttribute( position, index ); const morphInfluences = this.morphTargetInfluences; if ( morphPosition && morphInfluences ) { _morphA.set( 0, 0, 0 ); for ( let i = 0, il = morphPosition.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morphAttribute = morphPosition[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morphAttribute, index ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); } else { _morphA.addScaledVector( _tempA.sub( target ), influence ); } } target.add( _morphA ); } return target; } raycast( raycaster, intersects ) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if ( material === undefined ) return; // test with bounding sphere in world space if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$6.copy( geometry.boundingSphere ); _sphere$6.applyMatrix4( matrixWorld ); // check distance from ray origin to bounding sphere _ray$3.copy( raycaster.ray ).recast( raycaster.near ); if ( _sphere$6.containsPoint( _ray$3.origin ) === false ) { if ( _ray$3.intersectSphere( _sphere$6, _sphereHitAt ) === null ) return; if ( _ray$3.origin.distanceToSquared( _sphereHitAt ) > ( raycaster.far - raycaster.near ) ** 2 ) return; } // convert ray to local space of mesh _inverseMatrix$3.copy( matrixWorld ).invert(); _ray$3.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$3 ); // test with bounding box in local space if ( geometry.boundingBox !== null ) { if ( _ray$3.intersectsBox( geometry.boundingBox ) === false ) return; } // test for intersections with geometry this._computeIntersections( raycaster, intersects, _ray$3 ); } _computeIntersections( raycaster, intersects, rayLocalSpace ) { let intersection; const geometry = this.geometry; const material = this.material; const index = geometry.index; const position = geometry.attributes.position; const uv = geometry.attributes.uv; const uv1 = geometry.attributes.uv1; const normal = geometry.attributes.normal; const groups = geometry.groups; const drawRange = geometry.drawRange; if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = index.getX( j ); const b = index.getX( j + 1 ); const c = index.getX( j + 2 ); intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = index.getX( i ); const b = index.getX( i + 1 ); const c = index.getX( i + 2 ); intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection ); } } } } else if ( position !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = j; const b = j + 1; const c = j + 2; intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( position.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = i; const b = i + 1; const c = i + 2; intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection ); } } } } } } function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) { let intersect; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, ( material.side === FrontSide ), point ); } if ( intersect === null ) return null; _intersectionPointWorld.copy( point ); _intersectionPointWorld.applyMatrix4( object.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkGeometryIntersection( object, material, raycaster, ray, uv, uv1, normal, a, b, c ) { object.getVertexPosition( a, _vA$1 ); object.getVertexPosition( b, _vB$1 ); object.getVertexPosition( c, _vC$1 ); const intersection = checkIntersection( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint ); if ( intersection ) { if ( uv ) { _uvA$1.fromBufferAttribute( uv, a ); _uvB$1.fromBufferAttribute( uv, b ); _uvC$1.fromBufferAttribute( uv, c ); intersection.uv = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } if ( uv1 ) { _uvA$1.fromBufferAttribute( uv1, a ); _uvB$1.fromBufferAttribute( uv1, b ); _uvC$1.fromBufferAttribute( uv1, c ); intersection.uv1 = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ); } if ( normal ) { _normalA.fromBufferAttribute( normal, a ); _normalB.fromBufferAttribute( normal, b ); _normalC.fromBufferAttribute( normal, c ); intersection.normal = Triangle.getInterpolation( _intersectionPoint, _vA$1, _vB$1, _vC$1, _normalA, _normalB, _normalC, new Vector3() ); if ( intersection.normal.dot( ray.direction ) > 0 ) { intersection.normal.multiplyScalar( - 1 ); } } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal ); intersection.face = face; } return intersection; } class BoxGeometry extends BufferGeometry { constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) { super(); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor( widthSegments ); heightSegments = Math.floor( heightSegments ); depthSegments = Math.floor( depthSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segmentHeight - heightHalf; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : - 1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * ( iy + 1 ); const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); } } /** * Uniform Utilities */ function cloneUniforms( src ) { const dst = {}; for ( const u in src ) { dst[ u ] = {}; for ( const p in src[ u ] ) { const property = src[ u ][ p ]; if ( property && ( property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion ) ) { if ( property.isRenderTargetTexture ) { console.warn( 'UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms().' ); dst[ u ][ p ] = null; } else { dst[ u ][ p ] = property.clone(); } } else if ( Array.isArray( property ) ) { dst[ u ][ p ] = property.slice(); } else { dst[ u ][ p ] = property; } } } return dst; } function mergeUniforms( uniforms ) { const merged = {}; for ( let u = 0; u < uniforms.length; u ++ ) { const tmp = cloneUniforms( uniforms[ u ] ); for ( const p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; } function cloneUniformsGroups( src ) { const dst = []; for ( let u = 0; u < src.length; u ++ ) { dst.push( src[ u ].clone() ); } return dst; } function getUnlitUniformColorSpace( renderer ) { if ( renderer.getRenderTarget() === null ) { // https://github.com/mrdoob/three.js/pull/23937#issuecomment-1111067398 return renderer.outputColorSpace; } return ColorManagement.workingColorSpace; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; class ShaderMaterial extends Material { constructor( parameters ) { super(); this.isShaderMaterial = true; this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.uniformsGroups = []; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.forceSinglePass = true; this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false, // set to use shader texture LOD clipCullDistance: false, // set to use vertex shader clipping multiDraw: false // set to use vertex shader multi_draw / enable gl_DrawID }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv1': [ 0, 0 ] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if ( parameters !== undefined ) { this.setValues( parameters ); } } copy( source ) { super.copy( source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms( source.uniforms ); this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups ); this.defines = Object.assign( {}, source.defines ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign( {}, source.extensions ); this.glslVersion = source.glslVersion; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.glslVersion = this.glslVersion; data.uniforms = {}; for ( const name in this.uniforms ) { const uniform = this.uniforms[ name ]; const value = uniform.value; if ( value && value.isTexture ) { data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid }; } else if ( value && value.isColor ) { data.uniforms[ name ] = { type: 'c', value: value.getHex() }; } else if ( value && value.isVector2 ) { data.uniforms[ name ] = { type: 'v2', value: value.toArray() }; } else if ( value && value.isVector3 ) { data.uniforms[ name ] = { type: 'v3', value: value.toArray() }; } else if ( value && value.isVector4 ) { data.uniforms[ name ] = { type: 'v4', value: value.toArray() }; } else if ( value && value.isMatrix3 ) { data.uniforms[ name ] = { type: 'm3', value: value.toArray() }; } else if ( value && value.isMatrix4 ) { data.uniforms[ name ] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[ name ] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; data.lights = this.lights; data.clipping = this.clipping; const extensions = {}; for ( const key in this.extensions ) { if ( this.extensions[ key ] === true ) extensions[ key ] = true; } if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions; return data; } } class Camera extends Object3D { constructor() { super(); this.isCamera = true; this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); this.coordinateSystem = WebGLCoordinateSystem; } copy( source, recursive ) { super.copy( source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); this.coordinateSystem = source.coordinateSystem; return this; } getWorldDirection( target ) { return super.getWorldDirection( target ).negate(); } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } updateWorldMatrix( updateParents, updateChildren ) { super.updateWorldMatrix( updateParents, updateChildren ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } clone() { return new this.constructor().copy( this ); } } const _v3$1 = /*@__PURE__*/ new Vector3(); const _minTarget = /*@__PURE__*/ new Vector2(); const _maxTarget = /*@__PURE__*/ new Vector2(); class PerspectiveCamera extends Camera { constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) { super(); this.isPerspectiveCamera = true; this.type = 'PerspectiveCamera'; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength( focalLength ) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan( Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom ); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); } /** * Computes the 2D bounds of the camera's viewable rectangle at a given distance along the viewing direction. * Sets minTarget and maxTarget to the coordinates of the lower-left and upper-right corners of the view rectangle. */ getViewBounds( distance, minTarget, maxTarget ) { _v3$1.set( - 1, - 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); minTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); _v3$1.set( 1, 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); maxTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); } /** * Computes the width and height of the camera's viewable rectangle at a given distance along the viewing direction. * Copies the result into the target Vector2, where x is width and y is height. */ getViewSize( distance, target ) { this.getViewBounds( distance, _minTarget, _maxTarget ); return target.subVectors( _maxTarget, _minTarget ); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = - 0.5 * width; const view = this.view; if ( this.view !== null && this.view.enabled ) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far, this.coordinateSystem ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } const fov = - 90; // negative fov is not an error const aspect = 1; class CubeCamera extends Object3D { constructor( near, far, renderTarget ) { super(); this.type = 'CubeCamera'; this.renderTarget = renderTarget; this.coordinateSystem = null; this.activeMipmapLevel = 0; const cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.layers = this.layers; this.add( cameraPX ); const cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.layers = this.layers; this.add( cameraNX ); const cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.layers = this.layers; this.add( cameraPY ); const cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.layers = this.layers; this.add( cameraNY ); const cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.layers = this.layers; this.add( cameraPZ ); const cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.layers = this.layers; this.add( cameraNZ ); } updateCoordinateSystem() { const coordinateSystem = this.coordinateSystem; const cameras = this.children.concat(); const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = cameras; for ( const camera of cameras ) this.remove( camera ); if ( coordinateSystem === WebGLCoordinateSystem ) { cameraPX.up.set( 0, 1, 0 ); cameraPX.lookAt( 1, 0, 0 ); cameraNX.up.set( 0, 1, 0 ); cameraNX.lookAt( - 1, 0, 0 ); cameraPY.up.set( 0, 0, - 1 ); cameraPY.lookAt( 0, 1, 0 ); cameraNY.up.set( 0, 0, 1 ); cameraNY.lookAt( 0, - 1, 0 ); cameraPZ.up.set( 0, 1, 0 ); cameraPZ.lookAt( 0, 0, 1 ); cameraNZ.up.set( 0, 1, 0 ); cameraNZ.lookAt( 0, 0, - 1 ); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { cameraPX.up.set( 0, - 1, 0 ); cameraPX.lookAt( - 1, 0, 0 ); cameraNX.up.set( 0, - 1, 0 ); cameraNX.lookAt( 1, 0, 0 ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( 0, 1, 0 ); cameraNY.up.set( 0, 0, - 1 ); cameraNY.lookAt( 0, - 1, 0 ); cameraPZ.up.set( 0, - 1, 0 ); cameraPZ.lookAt( 0, 0, 1 ); cameraNZ.up.set( 0, - 1, 0 ); cameraNZ.lookAt( 0, 0, - 1 ); } else { throw new Error( 'THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: ' + coordinateSystem ); } for ( const camera of cameras ) { this.add( camera ); camera.updateMatrixWorld(); } } update( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); const { renderTarget, activeMipmapLevel } = this; if ( this.coordinateSystem !== renderer.coordinateSystem ) { this.coordinateSystem = renderer.coordinateSystem; this.updateCoordinateSystem(); } const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children; const currentRenderTarget = renderer.getRenderTarget(); const currentActiveCubeFace = renderer.getActiveCubeFace(); const currentActiveMipmapLevel = renderer.getActiveMipmapLevel(); const currentXrEnabled = renderer.xr.enabled; renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget( renderTarget, 0, activeMipmapLevel ); renderer.render( scene, cameraPX ); renderer.setRenderTarget( renderTarget, 1, activeMipmapLevel ); renderer.render( scene, cameraNX ); renderer.setRenderTarget( renderTarget, 2, activeMipmapLevel ); renderer.render( scene, cameraPY ); renderer.setRenderTarget( renderTarget, 3, activeMipmapLevel ); renderer.render( scene, cameraNY ); renderer.setRenderTarget( renderTarget, 4, activeMipmapLevel ); renderer.render( scene, cameraPZ ); // mipmaps are generated during the last call of render() // at this point, all sides of the cube render target are defined renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget( renderTarget, 5, activeMipmapLevel ); renderer.render( scene, cameraNZ ); renderer.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel ); renderer.xr.enabled = currentXrEnabled; renderTarget.texture.needsPMREMUpdate = true; } } class CubeTexture extends Texture { constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); this.isCubeTexture = true; this.flipY = false; } get images() { return this.image; } set images( value ) { this.image = value; } } class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor( size = 1, options = {} ) { super( size, size, options ); this.isWebGLCubeRenderTarget = true; const image = { width: size, height: size, depth: 1 }; const images = [ image, image, image, image, image, image ]; this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace ); // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; } fromEquirectangularTexture( renderer, texture ) { this.texture.type = texture.type; this.texture.colorSpace = texture.colorSpace; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null }, }, vertexShader: /* glsl */` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry( 5, 5, 5 ); const material = new ShaderMaterial( { name: 'CubemapFromEquirect', uniforms: cloneUniforms( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending } ); material.uniforms.tEquirect.value = texture; const mesh = new Mesh( geometry, material ); const currentMinFilter = texture.minFilter; // Avoid blurred poles if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter; const camera = new CubeCamera( 1, 10, this ); camera.update( renderer, mesh ); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear( renderer, color, depth, stencil ) { const currentRenderTarget = renderer.getRenderTarget(); for ( let i = 0; i < 6; i ++ ) { renderer.setRenderTarget( this, i ); renderer.clear( color, depth, stencil ); } renderer.setRenderTarget( currentRenderTarget ); } } const _vector1 = /*@__PURE__*/ new Vector3(); const _vector2 = /*@__PURE__*/ new Vector3(); const _normalMatrix = /*@__PURE__*/ new Matrix3(); class Plane { constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { this.isPlane = true; // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; } setComponents( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; } setFromNormalAndCoplanarPoint( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; } setFromCoplanarPoints( a, b, c ) { const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; } copy( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= - 1; this.normal.negate(); return this; } distanceToPoint( point ) { return this.normal.dot( point ) + this.constant; } distanceToSphere( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; } projectPoint( point, target ) { return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) ); } intersectLine( line, target ) { const direction = line.delta( _vector1 ); const denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return null; } const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return null; } return target.copy( line.start ).addScaledVector( direction, t ); } intersectsLine( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint( line.start ); const endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); } intersectsBox( box ) { return box.intersectsPlane( this ); } intersectsSphere( sphere ) { return sphere.intersectsPlane( this ); } coplanarPoint( target ) { return target.copy( this.normal ).multiplyScalar( - this.constant ); } applyMatrix4( matrix, optionalNormalMatrix ) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; } translate( offset ) { this.constant -= offset.dot( this.normal ); return this; } equals( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } clone() { return new this.constructor().copy( this ); } } const _sphere$5 = /*@__PURE__*/ new Sphere(); const _vector$7 = /*@__PURE__*/ new Vector3(); class Frustum { constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) { this.planes = [ p0, p1, p2, p3, p4, p5 ]; } set( p0, p1, p2, p3, p4, p5 ) { const planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; } copy( frustum ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; } setFromProjectionMatrix( m, coordinateSystem = WebGLCoordinateSystem ) { const planes = this.planes; const me = m.elements; const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); if ( coordinateSystem === WebGLCoordinateSystem ) { planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { planes[ 5 ].setComponents( me2, me6, me10, me14 ).normalize(); } else { throw new Error( 'THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: ' + coordinateSystem ); } return this; } intersectsObject( object ) { if ( object.boundingSphere !== undefined ) { if ( object.boundingSphere === null ) object.computeBoundingSphere(); _sphere$5.copy( object.boundingSphere ).applyMatrix4( object.matrixWorld ); } else { const geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$5.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); } return this.intersectsSphere( _sphere$5 ); } intersectsSprite( sprite ) { _sphere$5.center.set( 0, 0, 0 ); _sphere$5.radius = 0.7071067811865476; _sphere$5.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( _sphere$5 ); } intersectsSphere( sphere ) { const planes = this.planes; const center = sphere.center; const negRadius = - sphere.radius; for ( let i = 0; i < 6; i ++ ) { const distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; } intersectsBox( box ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { const plane = planes[ i ]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if ( plane.distanceToPoint( _vector$7 ) < 0 ) { return false; } } return true; } containsPoint( point ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } clone() { return new this.constructor().copy( this ); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame( time, frame ) { animationLoop( time, frame ); requestId = context.requestAnimationFrame( onAnimationFrame ); } return { start: function () { if ( isAnimating === true ) return; if ( animationLoop === null ) return; requestId = context.requestAnimationFrame( onAnimationFrame ); isAnimating = true; }, stop: function () { context.cancelAnimationFrame( requestId ); isAnimating = false; }, setAnimationLoop: function ( callback ) { animationLoop = callback; }, setContext: function ( value ) { context = value; } }; } function WebGLAttributes( gl, capabilities ) { const isWebGL2 = capabilities.isWebGL2; const buffers = new WeakMap(); function createBuffer( attribute, bufferType ) { const array = attribute.array; const usage = attribute.usage; const size = array.byteLength; const buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); let type; if ( array instanceof Float32Array ) { type = gl.FLOAT; } else if ( array instanceof Uint16Array ) { if ( attribute.isFloat16BufferAttribute ) { if ( isWebGL2 ) { type = gl.HALF_FLOAT; } else { throw new Error( 'THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.' ); } } else { type = gl.UNSIGNED_SHORT; } } else if ( array instanceof Int16Array ) { type = gl.SHORT; } else if ( array instanceof Uint32Array ) { type = gl.UNSIGNED_INT; } else if ( array instanceof Int32Array ) { type = gl.INT; } else if ( array instanceof Int8Array ) { type = gl.BYTE; } else if ( array instanceof Uint8Array ) { type = gl.UNSIGNED_BYTE; } else if ( array instanceof Uint8ClampedArray ) { type = gl.UNSIGNED_BYTE; } else { throw new Error( 'THREE.WebGLAttributes: Unsupported buffer data format: ' + array ); } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version, size: size }; } function updateBuffer( buffer, attribute, bufferType ) { const array = attribute.array; const updateRange = attribute._updateRange; // @deprecated, r159 const updateRanges = attribute.updateRanges; gl.bindBuffer( bufferType, buffer ); if ( updateRange.count === - 1 && updateRanges.length === 0 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } if ( updateRanges.length !== 0 ) { for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { const range = updateRanges[ i ]; if ( isWebGL2 ) { gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, array, range.start, range.count ); } else { gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, array.subarray( range.start, range.start + range.count ) ); } } attribute.clearUpdateRanges(); } // @deprecated, r159 if ( updateRange.count !== - 1 ) { if ( isWebGL2 ) { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count ); } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); } updateRange.count = - 1; // reset range } attribute.onUploadCallback(); } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; return buffers.get( attribute ); } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data ) { gl.deleteBuffer( data.buffer ); buffers.delete( attribute ); } } function update( attribute, bufferType ) { if ( attribute.isGLBufferAttribute ) { const cached = buffers.get( attribute ); if ( ! cached || cached.version < attribute.version ) { buffers.set( attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version } ); } return; } if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data === undefined ) { buffers.set( attribute, createBuffer( attribute, bufferType ) ); } else if ( data.version < attribute.version ) { if ( data.size !== attribute.array.byteLength ) { throw new Error( 'THREE.WebGLAttributes: The size of the buffer attribute\'s array buffer does not match the original size. Resizing buffer attributes is not supported.' ); } updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) { super(); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor( widthSegments ); const gridY = Math.floor( heightSegments ); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segment_height - height_half; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = ix + gridX1 * iy; const b = ix + gridX1 * ( iy + 1 ); const c = ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = ( ix + 1 ) + gridX1 * iy; indices.push( a, b, d ); indices.push( b, c, d ); } } this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); } } var alphahash_fragment = "#ifdef USE_ALPHAHASH\n\tif ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;\n#endif"; var alphahash_pars_fragment = "#ifdef USE_ALPHAHASH\n\tconst float ALPHA_HASH_SCALE = 0.05;\n\tfloat hash2D( vec2 value ) {\n\t\treturn fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );\n\t}\n\tfloat hash3D( vec3 value ) {\n\t\treturn hash2D( vec2( hash2D( value.xy ), value.z ) );\n\t}\n\tfloat getAlphaHashThreshold( vec3 position ) {\n\t\tfloat maxDeriv = max(\n\t\t\tlength( dFdx( position.xyz ) ),\n\t\t\tlength( dFdy( position.xyz ) )\n\t\t);\n\t\tfloat pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );\n\t\tvec2 pixScales = vec2(\n\t\t\texp2( floor( log2( pixScale ) ) ),\n\t\t\texp2( ceil( log2( pixScale ) ) )\n\t\t);\n\t\tvec2 alpha = vec2(\n\t\t\thash3D( floor( pixScales.x * position.xyz ) ),\n\t\t\thash3D( floor( pixScales.y * position.xyz ) )\n\t\t);\n\t\tfloat lerpFactor = fract( log2( pixScale ) );\n\t\tfloat x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;\n\t\tfloat a = min( lerpFactor, 1.0 - lerpFactor );\n\t\tvec3 cases = vec3(\n\t\t\tx * x / ( 2.0 * a * ( 1.0 - a ) ),\n\t\t\t( x - 0.5 * a ) / ( 1.0 - a ),\n\t\t\t1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )\n\t\t);\n\t\tfloat threshold = ( x < ( 1.0 - a ) )\n\t\t\t? ( ( x < a ) ? cases.x : cases.y )\n\t\t\t: cases.z;\n\t\treturn clamp( threshold , 1.0e-6, 1.0 );\n\t}\n#endif"; var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST\n\t#ifdef ALPHA_TO_COVERAGE\n\tdiffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );\n\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\tif ( diffuseColor.a < alphaTest ) discard;\n\t#endif\n#endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_CLEARCOAT ) \n\t\tclearcoatSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_SHEEN ) \n\t\tsheenSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometryNormal, geometryViewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var batching_pars_vertex = "#ifdef USE_BATCHING\n\tattribute float batchId;\n\tuniform highp sampler2D batchingTexture;\n\tmat4 getBatchingMatrix( const in float i ) {\n\t\tint size = textureSize( batchingTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( batchingTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( batchingTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( batchingTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( batchingTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n#endif"; var batching_vertex = "#ifdef USE_BATCHING\n\tmat4 batchingMatrix = getBatchingMatrix( batchId );\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );\n#ifdef USE_ALPHAHASH\n\tvPosition = vec3( position );\n#endif"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "float G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n} // validated"; var iridescence_fragment = "#ifdef USE_IRIDESCENCE\n\tconst mat3 XYZ_TO_REC709 = mat3(\n\t\t 3.2404542, -0.9692660, 0.0556434,\n\t\t-1.5371385, 1.8760108, -0.2040259,\n\t\t-0.4985314, 0.0415560, 1.0572252\n\t);\n\tvec3 Fresnel0ToIor( vec3 fresnel0 ) {\n\t\tvec3 sqrtF0 = sqrt( fresnel0 );\n\t\treturn ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n\t}\n\tvec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n\t}\n\tfloat IorToFresnel0( float transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n\t}\n\tvec3 evalSensitivity( float OPD, vec3 shift ) {\n\t\tfloat phase = 2.0 * PI * OPD * 1.0e-9;\n\t\tvec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n\t\tvec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n\t\tvec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n\t\tvec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );\n\t\txyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );\n\t\txyz /= 1.0685e-7;\n\t\tvec3 rgb = XYZ_TO_REC709 * xyz;\n\t\treturn rgb;\n\t}\n\tvec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n\t\tvec3 I;\n\t\tfloat iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n\t\tfloat sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n\t\tfloat cosTheta2Sq = 1.0 - sinTheta2Sq;\n\t\tif ( cosTheta2Sq < 0.0 ) {\n\t\t\treturn vec3( 1.0 );\n\t\t}\n\t\tfloat cosTheta2 = sqrt( cosTheta2Sq );\n\t\tfloat R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n\t\tfloat R12 = F_Schlick( R0, 1.0, cosTheta1 );\n\t\tfloat T121 = 1.0 - R12;\n\t\tfloat phi12 = 0.0;\n\t\tif ( iridescenceIOR < outsideIOR ) phi12 = PI;\n\t\tfloat phi21 = PI - phi12;\n\t\tvec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) );\t\tvec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n\t\tvec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n\t\tvec3 phi23 = vec3( 0.0 );\n\t\tif ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;\n\t\tif ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;\n\t\tif ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;\n\t\tfloat OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n\t\tvec3 phi = vec3( phi21 ) + phi23;\n\t\tvec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n\t\tvec3 r123 = sqrt( R123 );\n\t\tvec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n\t\tvec3 C0 = R12 + Rs;\n\t\tI = C0;\n\t\tvec3 Cm = Rs - T121;\n\t\tfor ( int m = 1; m <= 2; ++ m ) {\n\t\t\tCm *= r123;\n\t\t\tvec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n\t\t\tI += Cm * Sm;\n\t\t}\n\t\treturn max( I, vec3( 0.0 ) );\n\t}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vBumpMapUv );\n\t\tvec2 dSTdy = dFdy( vBumpMapUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );\n\t\tvec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#ifdef ALPHA_TO_COVERAGE\n\t\tfloat distanceToPlane, distanceGradient;\n\t\tfloat clipOpacity = 1.0;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\tclipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\tif ( clipOpacity == 0.0 ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tfloat unionClipOpacity = 1.0;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\t\tunionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tclipOpacity *= 1.0 - unionClipOpacity;\n\t\t#endif\n\t\tdiffuseColor.a *= clipOpacity;\n\t\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tbool clipped = true;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tif ( clipped ) discard;\n\t\t#endif\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\n#ifdef USE_ALPHAHASH\n\tvarying vec3 vPosition;\n#endif\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat luminance( const in vec3 rgb ) {\n\tconst vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 );\n\treturn dot( weights, rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}\nvec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n} // validated"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\thighp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define cubeUV_r0 1.0\n\t#define cubeUV_m0 - 2.0\n\t#define cubeUV_r1 0.8\n\t#define cubeUV_m1 - 1.0\n\t#define cubeUV_r4 0.4\n\t#define cubeUV_m4 2.0\n\t#define cubeUV_r5 0.305\n\t#define cubeUV_m5 3.0\n\t#define cubeUV_r6 0.21\n\t#define cubeUV_m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= cubeUV_r1 ) {\n\t\t\tmip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;\n\t\t} else if ( roughness >= cubeUV_r4 ) {\n\t\t\tmip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;\n\t\t} else if ( roughness >= cubeUV_r5 ) {\n\t\t\tmip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;\n\t\t} else if ( roughness >= cubeUV_r6 ) {\n\t\t\tmip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = objectTangent;\n#endif\n#ifdef USE_BATCHING\n\tmat3 bm = mat3( batchingMatrix );\n\ttransformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );\n\ttransformedNormal = bm * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = bm * transformedTangent;\n\t#endif\n#endif\n#ifdef USE_INSTANCING\n\tmat3 im = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );\n\ttransformedNormal = im * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = im * transformedTangent;\n\t#endif\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\ttransformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var colorspace_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var colorspace_pars_fragment = "\nconst mat3 LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = mat3(\n\tvec3( 0.8224621, 0.177538, 0.0 ),\n\tvec3( 0.0331941, 0.9668058, 0.0 ),\n\tvec3( 0.0170827, 0.0723974, 0.9105199 )\n);\nconst mat3 LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.2249401, - 0.2249404, 0.0 ),\n\tvec3( - 0.0420569, 1.0420571, 0.0 ),\n\tvec3( - 0.0196376, - 0.0786361, 1.0982735 )\n);\nvec4 LinearSRGBToLinearDisplayP3( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_SRGB_TO_LINEAR_DISPLAY_P3, value.a );\n}\nvec4 LinearDisplayP3ToLinearSRGB( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_DISPLAY_P3_TO_LINEAR_SRGB, value.a );\n}\nvec4 LinearTransferOETF( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBTransferOETF( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn sRGBTransferOETF( value );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform mat3 envMapRotation;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\tvec2 fw = fwidth( coord ) * 0.5;\n\t\treturn mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );\n\t#endif\n}"; var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_fragment = "LambertMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularStrength = specularStrength;"; var lights_lambert_pars_fragment = "varying vec3 vViewPosition;\nstruct LambertMaterial {\n\tvec3 diffuseColor;\n\tfloat specularStrength;\n};\nvoid RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Lambert\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Lambert"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\n#if defined( USE_LIGHT_PROBES )\n\tuniform vec3 lightProbe[ 9 ];\n#endif\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( LEGACY_LIGHTS )\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#else\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#ifdef USE_ENVMAP\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\t#ifdef USE_ANISOTROPY\n\t\tvec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {\n\t\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\t\tvec3 bentNormal = cross( bitangent, viewDir );\n\t\t\t\tbentNormal = normalize( cross( bentNormal, bitangent ) );\n\t\t\t\tbentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );\n\t\t\t\treturn getIBLRadiance( viewDir, bentNormal, roughness );\n\t\t\t#else\n\t\t\t\treturn vec3( 0.0 );\n\t\t\t#endif\n\t\t}\n\t#endif\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\tmaterial.ior = ior;\n\t#ifdef USE_SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULAR_COLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;\n\t\t#endif\n\t\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\t#ifdef USE_ANISOTROPYMAP\n\t\tmat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );\n\t\tvec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;\n\t\tvec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;\n\t#else\n\t\tvec2 anisotropyV = anisotropyVector;\n\t#endif\n\tmaterial.anisotropy = length( anisotropyV );\n\tif( material.anisotropy == 0.0 ) {\n\t\tanisotropyV = vec2( 1.0, 0.0 );\n\t} else {\n\t\tanisotropyV /= material.anisotropy;\n\t\tmaterial.anisotropy = saturate( material.anisotropy );\n\t}\n\tmaterial.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );\n\tmaterial.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;\n\tmaterial.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n\t#ifdef IOR\n\t\tfloat ior;\n\t#endif\n\t#ifdef USE_TRANSMISSION\n\t\tfloat transmission;\n\t\tfloat transmissionAlpha;\n\t\tfloat thickness;\n\t\tfloat attenuationDistance;\n\t\tvec3 attenuationColor;\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat anisotropy;\n\t\tfloat alphaT;\n\t\tvec3 anisotropyT;\n\t\tvec3 anisotropyB;\n\t#endif\n};\nvec3 clearcoatSpecularDirect = vec3( 0.0 );\nvec3 clearcoatSpecularIndirect = vec3( 0.0 );\nvec3 sheenSpecularDirect = vec3( 0.0 );\nvec3 sheenSpecularIndirect = vec3(0.0 );\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\n#ifdef USE_ANISOTROPY\n\tfloat V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {\n\t\tfloat gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );\n\t\tfloat gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );\n\t\tfloat v = 0.5 / ( gv + gl );\n\t\treturn saturate(v);\n\t}\n\tfloat D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {\n\t\tfloat a2 = alphaT * alphaB;\n\t\thighp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );\n\t\thighp float v2 = dot( v, v );\n\t\tfloat w2 = a2 / v2;\n\t\treturn RECIPROCAL_PI * a2 * pow2 ( w2 );\n\t}\n#endif\n#ifdef USE_CLEARCOAT\n\tvec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {\n\t\tvec3 f0 = material.clearcoatF0;\n\t\tfloat f90 = material.clearcoatF90;\n\t\tfloat roughness = material.clearcoatRoughness;\n\t\tfloat alpha = pow2( roughness );\n\t\tvec3 halfDir = normalize( lightDir + viewDir );\n\t\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\t\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\t\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\t\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\t\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t\treturn F * ( V * D );\n\t}\n#endif\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {\n\tvec3 f0 = material.specularColor;\n\tfloat f90 = material.specularF90;\n\tfloat roughness = material.roughness;\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t#ifdef USE_IRIDESCENCE\n\t\tF = mix( F, material.iridescenceFresnel, material.iridescence );\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat dotTL = dot( material.anisotropyT, lightDir );\n\t\tfloat dotTV = dot( material.anisotropyT, viewDir );\n\t\tfloat dotTH = dot( material.anisotropyT, halfDir );\n\t\tfloat dotBL = dot( material.anisotropyB, lightDir );\n\t\tfloat dotBV = dot( material.anisotropyB, viewDir );\n\t\tfloat dotBH = dot( material.anisotropyB, halfDir );\n\t\tfloat V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );\n\t\tfloat D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );\n\t#else\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t#endif\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometryNormal;\n\t\tvec3 viewDir = geometryViewDir;\n\t\tvec3 position = geometryPosition;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nvec3 geometryPosition = - vViewPosition;\nvec3 geometryNormal = normal;\nvec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\nvec3 geometryClearcoatNormal = vec3( 0.0 );\n#ifdef USE_CLEARCOAT\n\tgeometryClearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n\tfloat dotNVi = saturate( dot( normal, geometryViewDir ) );\n\tif ( material.iridescenceThickness == 0.0 ) {\n\t\tmaterial.iridescence = 0.0;\n\t} else {\n\t\tmaterial.iridescence = saturate( material.iridescence );\n\t}\n\tif ( material.iridescence > 0.0 ) {\n\t\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\t\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n\t}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometryPosition, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tvec4 spotColor;\n\tvec3 spotLightCoord;\n\tbool inSpotLightMap;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometryPosition, directLight );\n\t\t#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX\n\t\t#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS\n\t\t#else\n\t\t#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#endif\n\t\t#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )\n\t\t\tspotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;\n\t\t\tinSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );\n\t\t\tspotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );\n\t\t\tdirectLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;\n\t\t#endif\n\t\t#undef SPOT_LIGHT_MAP_INDEX\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if defined( USE_LIGHT_PROBES )\n\t\tirradiance += getLightProbeIrradiance( lightProbe, geometryNormal );\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometryNormal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\t#ifdef USE_ANISOTROPY\n\t\tradiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );\n\t#else\n\t\tradiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; var map_fragment = "#ifdef USE_MAP\n\tvec4 sampledDiffuseColor = texture2D( map, vMapUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );\n\t\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t#if defined( USE_POINTS_UV )\n\t\tvec2 uv = vUv;\n\t#else\n\t\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_POINTS_UV )\n\tvarying vec2 vUv;\n#else\n\t#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t\tuniform mat3 uvTransform;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphinstance_vertex = "#ifdef USE_INSTANCING_MORPH\n\tfloat morphTargetInfluences[MORPHTARGETS_COUNT];\n\tfloat morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tmorphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;\n\t}\n#endif"; var morphcolor_vertex = "#if defined( USE_MORPHCOLORS ) && defined( MORPHTARGETS_TEXTURE )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_INSTANCING_MORPH\n\t\tuniform float morphTargetBaseInfluence;\n\t#endif\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\t#ifndef USE_INSTANCING_MORPH\n\t\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\t#endif\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform ivec2 morphTargetsTextureSize;\n\t\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = dFdx( vViewPosition );\n\tvec3 fdy = dFdy( vViewPosition );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal *= faceDirection;\n\t#endif\n#endif\n#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn = getTangentFrame( - vViewPosition, normal,\n\t\t#if defined( USE_NORMALMAP )\n\t\t\tvNormalMapUv\n\t\t#elif defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tvClearcoatNormalMapUv\n\t\t#else\n\t\t\tvUv\n\t\t#endif\n\t\t);\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn[0] *= faceDirection;\n\t\ttbn[1] *= faceDirection;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn2[0] *= faceDirection;\n\t\ttbn2[1] *= faceDirection;\n\t#endif\n#endif\nvec3 nonPerturbedNormal = normal;"; var normal_fragment_maps = "#ifdef USE_NORMALMAP_OBJECTSPACE\n\tnormal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( USE_NORMALMAP_TANGENTSPACE )\n\tvec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\tnormal = normalize( tbn * mapN );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef USE_NORMALMAP_OBJECTSPACE\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )\n\tmat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( uv.st );\n\t\tvec2 st1 = dFdy( uv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );\n\t\treturn mat3( T * scale, B * scale, N );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = nonPerturbedNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\tclearcoatNormal = normalize( tbn2 * clearcoatMapN );\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif"; var iridescence_pars_fragment = "#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif"; var opaque_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= material.transmissionAlpha;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec2 packDepthToRG( in highp float v ) {\n\treturn packDepthToRGBA( v ).yx;\n}\nfloat unpackRGToDepth( const in highp vec2 v ) {\n\treturn unpackRGBAToDepth( vec4( v.xy, 0.0, 0.0 ) );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn depth * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * depth - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_BATCHING\n\tmvPosition = batchingMatrix * mvPosition;\n#endif\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#if NUM_SPOT_LIGHT_COORDS > 0\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#if NUM_SPOT_LIGHT_MAPS > 0\n\tuniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;\n\t\tbool frustumTest = inFrustum && shadowCoord.z <= 1.0;\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; var shadowmap_pars_vertex = "#if NUM_SPOT_LIGHT_COORDS > 0\n\tuniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )\n\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\tvec4 shadowWorldPosition;\n#endif\n#if defined( USE_SHADOWMAP )\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if NUM_SPOT_LIGHT_COORDS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition;\n\t\t#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t\tshadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;\n\t\t#endif\n\t\tvSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tint size = textureSize( boneTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn saturate( toneMappingExposure * color );\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nconst mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.6605, - 0.1246, - 0.0182 ),\n\tvec3( - 0.5876, 1.1329, - 0.1006 ),\n\tvec3( - 0.0728, - 0.0083, 1.1187 )\n);\nconst mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(\n\tvec3( 0.6274, 0.0691, 0.0164 ),\n\tvec3( 0.3293, 0.9195, 0.0880 ),\n\tvec3( 0.0433, 0.0113, 0.8956 )\n);\nvec3 agxDefaultContrastApprox( vec3 x ) {\n\tvec3 x2 = x * x;\n\tvec3 x4 = x2 * x2;\n\treturn + 15.5 * x4 * x2\n\t\t- 40.14 * x4 * x\n\t\t+ 31.96 * x4\n\t\t- 6.868 * x2 * x\n\t\t+ 0.4298 * x2\n\t\t+ 0.1191 * x\n\t\t- 0.00232;\n}\nvec3 AgXToneMapping( vec3 color ) {\n\tconst mat3 AgXInsetMatrix = mat3(\n\t\tvec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),\n\t\tvec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),\n\t\tvec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )\n\t);\n\tconst mat3 AgXOutsetMatrix = mat3(\n\t\tvec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),\n\t\tvec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),\n\t\tvec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )\n\t);\n\tconst float AgxMinEv = - 12.47393;\tconst float AgxMaxEv = 4.026069;\n\tcolor *= toneMappingExposure;\n\tcolor = LINEAR_SRGB_TO_LINEAR_REC2020 * color;\n\tcolor = AgXInsetMatrix * color;\n\tcolor = max( color, 1e-10 );\tcolor = log2( color );\n\tcolor = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );\n\tcolor = clamp( color, 0.0, 1.0 );\n\tcolor = agxDefaultContrastApprox( color );\n\tcolor = AgXOutsetMatrix * color;\n\tcolor = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );\n\tcolor = LINEAR_REC2020_TO_LINEAR_SRGB * color;\n\tcolor = clamp( color, 0.0, 1.0 );\n\treturn color;\n}\nvec3 NeutralToneMapping( vec3 color ) {\n\tfloat startCompression = 0.8 - 0.04;\n\tfloat desaturation = 0.15;\n\tcolor *= toneMappingExposure;\n\tfloat x = min(color.r, min(color.g, color.b));\n\tfloat offset = x < 0.08 ? x - 6.25 * x * x : 0.04;\n\tcolor -= offset;\n\tfloat peak = max(color.r, max(color.g, color.b));\n\tif (peak < startCompression) return color;\n\tfloat d = 1. - startCompression;\n\tfloat newPeak = 1. - d * d / (peak + d - startCompression);\n\tcolor *= newPeak / peak;\n\tfloat g = 1. - 1. / (desaturation * (peak - newPeak) + 1.);\n\treturn mix(color, vec3(1, 1, 1), g);\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tmaterial.transmission = transmission;\n\tmaterial.transmissionAlpha = 1.0;\n\tmaterial.thickness = thickness;\n\tmaterial.attenuationDistance = attenuationDistance;\n\tmaterial.attenuationColor = attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tmaterial.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tmaterial.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmitted = getIBLVolumeRefraction(\n\t\tn, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, material.ior, material.thickness,\n\t\tmaterial.attenuationColor, material.attenuationDistance );\n\tmaterial.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );\n\ttotalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tfloat w0( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );\n\t}\n\tfloat w1( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );\n\t}\n\tfloat w2( float a ){\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );\n\t}\n\tfloat w3( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * a );\n\t}\n\tfloat g0( float a ) {\n\t\treturn w0( a ) + w1( a );\n\t}\n\tfloat g1( float a ) {\n\t\treturn w2( a ) + w3( a );\n\t}\n\tfloat h0( float a ) {\n\t\treturn - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );\n\t}\n\tfloat h1( float a ) {\n\t\treturn 1.0 + w3( a ) / ( w2( a ) + w3( a ) );\n\t}\n\tvec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {\n\t\tuv = uv * texelSize.zw + 0.5;\n\t\tvec2 iuv = floor( uv );\n\t\tvec2 fuv = fract( uv );\n\t\tfloat g0x = g0( fuv.x );\n\t\tfloat g1x = g1( fuv.x );\n\t\tfloat h0x = h0( fuv.x );\n\t\tfloat h1x = h1( fuv.x );\n\t\tfloat h0y = h0( fuv.y );\n\t\tfloat h1y = h1( fuv.y );\n\t\tvec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\treturn g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +\n\t\t\tg1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );\n\t}\n\tvec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {\n\t\tvec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );\n\t\tvec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );\n\t\tvec2 fLodSizeInv = 1.0 / fLodSize;\n\t\tvec2 cLodSizeInv = 1.0 / cLodSize;\n\t\tvec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );\n\t\tvec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );\n\t\treturn mix( fSample, cSample, fract( lod ) );\n\t}\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\treturn textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );\n\t}\n\tvec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( isinf( attenuationDistance ) ) {\n\t\t\treturn vec3( 1.0 );\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 transmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 attenuatedColor = transmittance * transmittedLight.rgb;\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\tfloat transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );\n\t}\n#endif"; var uv_pars_fragment = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif"; var uv_pars_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tuniform mat3 mapTransform;\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform mat3 alphaMapTransform;\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tuniform mat3 lightMapTransform;\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tuniform mat3 aoMapTransform;\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tuniform mat3 bumpMapTransform;\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tuniform mat3 normalMapTransform;\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tuniform mat3 displacementMapTransform;\n\tvarying vec2 vDisplacementMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tuniform mat3 emissiveMapTransform;\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tuniform mat3 metalnessMapTransform;\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tuniform mat3 roughnessMapTransform;\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tuniform mat3 anisotropyMapTransform;\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tuniform mat3 clearcoatMapTransform;\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform mat3 clearcoatNormalMapTransform;\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform mat3 clearcoatRoughnessMapTransform;\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tuniform mat3 sheenColorMapTransform;\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tuniform mat3 sheenRoughnessMapTransform;\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tuniform mat3 iridescenceMapTransform;\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform mat3 iridescenceThicknessMapTransform;\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tuniform mat3 specularMapTransform;\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tuniform mat3 specularColorMapTransform;\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tuniform mat3 specularIntensityMapTransform;\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif"; var uv_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvUv = vec3( uv, 1 ).xy;\n#endif\n#ifdef USE_MAP\n\tvMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ALPHAMAP\n\tvAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_LIGHTMAP\n\tvLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_AOMAP\n\tvAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_BUMPMAP\n\tvBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_NORMALMAP\n\tvNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tvDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_METALNESSMAP\n\tvMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULARMAP\n\tvSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tvTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_THICKNESSMAP\n\tvThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_BATCHING\n\t\tworldPosition = batchingMatrix * worldPosition;\n\t#endif\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; const vertex$h = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; const fragment$h = "uniform sampler2D t2D;\nuniform float backgroundIntensity;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\ttexColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}"; const vertex$g = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; const fragment$g = "#ifdef ENVMAP_TYPE_CUBE\n\tuniform samplerCube envMap;\n#elif defined( ENVMAP_TYPE_CUBE_UV )\n\tuniform sampler2D envMap;\n#endif\nuniform float flipEnvMap;\nuniform float backgroundBlurriness;\nuniform float backgroundIntensity;\nuniform mat3 backgroundRotation;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );\n\t#else\n\t\tvec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}"; const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; const fragment$f = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldDirection;\nvoid main() {\n\tvec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\n\tgl_FragColor = texColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}"; const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$9 = "#define LAMBERT\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$9 = "#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t#else\n\t\tvec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( 0.0, 0.0, 0.0, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), diffuseColor.a );\n\t#ifdef OPAQUE\n\t\tgl_FragColor.a = 1.0;\n\t#endif\n}"; const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\tuniform vec2 anisotropyVector;\n\t#ifdef USE_ANISOTROPYMAP\n\t\tuniform sampler2D anisotropyMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecularDirect + sheenSpecularIndirect;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometryClearcoatNormal, geometryViewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + ( clearcoatSpecularDirect + clearcoatSpecularIndirect ) * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \n#ifdef USE_POINTS_UV\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\nvoid main() {\n\t#ifdef USE_POINTS_UV\n\t\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$2 = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const ShaderChunk = { alphahash_fragment: alphahash_fragment, alphahash_pars_fragment: alphahash_pars_fragment, alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, alphatest_pars_fragment: alphatest_pars_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, batching_pars_vertex: batching_pars_vertex, batching_vertex: batching_vertex, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, iridescence_fragment: iridescence_fragment, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, colorspace_fragment: colorspace_fragment, colorspace_pars_fragment: colorspace_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_fragment: lights_lambert_fragment, lights_lambert_pars_fragment: lights_lambert_pars_fragment, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphinstance_vertex: morphinstance_vertex, morphcolor_vertex: morphcolor_vertex, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normal_pars_fragment: normal_pars_fragment, normal_pars_vertex: normal_pars_vertex, normal_vertex: normal_vertex, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, iridescence_pars_fragment: iridescence_pars_fragment, opaque_fragment: opaque_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, worldpos_vertex: worldpos_vertex, background_vert: vertex$h, background_frag: fragment$h, backgroundCube_vert: vertex$g, backgroundCube_frag: fragment$g, cube_vert: vertex$f, cube_frag: fragment$f, depth_vert: vertex$e, depth_frag: fragment$e, distanceRGBA_vert: vertex$d, distanceRGBA_frag: fragment$d, equirect_vert: vertex$c, equirect_frag: fragment$c, linedashed_vert: vertex$b, linedashed_frag: fragment$b, meshbasic_vert: vertex$a, meshbasic_frag: fragment$a, meshlambert_vert: vertex$9, meshlambert_frag: fragment$9, meshmatcap_vert: vertex$8, meshmatcap_frag: fragment$8, meshnormal_vert: vertex$7, meshnormal_frag: fragment$7, meshphong_vert: vertex$6, meshphong_frag: fragment$6, meshphysical_vert: vertex$5, meshphysical_frag: fragment$5, meshtoon_vert: vertex$4, meshtoon_frag: fragment$4, points_vert: vertex$3, points_frag: fragment$3, shadow_vert: vertex$2, shadow_frag: fragment$2, sprite_vert: vertex$1, sprite_frag: fragment$1 }; /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, map: { value: null }, mapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null }, specularMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, envmap: { envMap: { value: null }, envMapRotation: { value: /*@__PURE__*/ new Matrix3() }, flipEnvMap: { value: - 1 }, reflectivity: { value: 1.0 }, // basic, lambert, phong ior: { value: 1.5 }, // physical refractionRatio: { value: 0.98 }, // basic, lambert, phong }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 }, aoMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 }, lightMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, bumpmap: { bumpMap: { value: null }, bumpMapTransform: { value: /*@__PURE__*/ new Matrix3() }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, normalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementMapTransform: { value: /*@__PURE__*/ new Matrix3() }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, emissivemap: { emissiveMap: { value: null }, emissiveMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, metalnessmap: { metalnessMap: { value: null }, metalnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, roughnessmap: { roughnessMap: { value: null }, roughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: /*@__PURE__*/ new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotLightMap: { value: [] }, spotShadowMap: { value: [] }, spotLightMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 }, uvTransform: { value: /*@__PURE__*/ new Matrix3() } }, sprite: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, center: { value: /*@__PURE__*/ new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, mapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 } } }; const ShaderLib = { basic: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, specular: { value: /*@__PURE__*/ new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } // temporary } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.sprite, UniformsLib.fog ] ), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: /*@__PURE__*/ new Matrix3() }, t2D: { value: null }, backgroundIntensity: { value: 1 } }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, backgroundCube: { uniforms: { envMap: { value: null }, flipEnvMap: { value: - 1 }, backgroundBlurriness: { value: 0 }, backgroundIntensity: { value: 1 }, backgroundRotation: { value: /*@__PURE__*/ new Matrix3() } }, vertexShader: ShaderChunk.backgroundCube_vert, fragmentShader: ShaderChunk.backgroundCube_frag }, cube: { uniforms: { tCube: { value: null }, tFlip: { value: - 1 }, opacity: { value: 1.0 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null }, }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: /*@__PURE__*/ new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.lights, UniformsLib.fog, { color: { value: /*@__PURE__*/ new Color( 0x00000 ) }, opacity: { value: 1.0 } }, ] ), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: /*@__PURE__*/ mergeUniforms( [ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatMapTransform: { value: /*@__PURE__*/ new Matrix3() }, clearcoatNormalMap: { value: null }, clearcoatNormalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, clearcoatNormalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, iridescence: { value: 0 }, iridescenceMap: { value: null }, iridescenceMapTransform: { value: /*@__PURE__*/ new Matrix3() }, iridescenceIOR: { value: 1.3 }, iridescenceThicknessMinimum: { value: 100 }, iridescenceThicknessMaximum: { value: 400 }, iridescenceThicknessMap: { value: null }, iridescenceThicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, sheen: { value: 0 }, sheenColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, sheenColorMap: { value: null }, sheenColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, sheenRoughness: { value: 1 }, sheenRoughnessMap: { value: null }, sheenRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionMapTransform: { value: /*@__PURE__*/ new Matrix3() }, transmissionSamplerSize: { value: /*@__PURE__*/ new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, thicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, attenuationDistance: { value: 0 }, attenuationColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, specularColor: { value: /*@__PURE__*/ new Color( 1, 1, 1 ) }, specularColorMap: { value: null }, specularColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, specularIntensity: { value: 1 }, specularIntensityMap: { value: null }, specularIntensityMapTransform: { value: /*@__PURE__*/ new Matrix3() }, anisotropyVector: { value: /*@__PURE__*/ new Vector2() }, anisotropyMap: { value: null }, anisotropyMapTransform: { value: /*@__PURE__*/ new Matrix3() }, } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; const _rgb = { r: 0, b: 0, g: 0 }; const _e1$1 = /*@__PURE__*/ new Euler(); const _m1$1 = /*@__PURE__*/ new Matrix4(); function WebGLBackground( renderer, cubemaps, cubeuvmaps, state, objects, alpha, premultipliedAlpha ) { const clearColor = new Color( 0x000000 ); let clearAlpha = alpha === true ? 0 : 1; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function render( renderList, scene ) { let forceClear = false; let background = scene.isScene === true ? scene.background : null; if ( background && background.isTexture ) { const usePMREM = scene.backgroundBlurriness > 0; // use PMREM if the user wants to blur the background background = ( usePMREM ? cubeuvmaps : cubemaps ).get( background ); } if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); if ( environmentBlendMode === 'additive' ) { state.buffers.color.setClear( 0, 0, 0, 1, premultipliedAlpha ); } else if ( environmentBlendMode === 'alpha-blend' ) { state.buffers.color.setClear( 0, 0, 0, 0, premultipliedAlpha ); } if ( renderer.autoClear || forceClear ) { renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } if ( background && ( background.isCubeTexture || background.mapping === CubeUVReflectionMapping ) ) { if ( boxMesh === undefined ) { boxMesh = new Mesh( new BoxGeometry( 1, 1, 1 ), new ShaderMaterial( { name: 'BackgroundCubeMaterial', uniforms: cloneUniforms( ShaderLib.backgroundCube.uniforms ), vertexShader: ShaderLib.backgroundCube.vertexShader, fragmentShader: ShaderLib.backgroundCube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); boxMesh.geometry.deleteAttribute( 'normal' ); boxMesh.geometry.deleteAttribute( 'uv' ); boxMesh.onBeforeRender = function ( renderer, scene, camera ) { this.matrixWorld.copyPosition( camera.matrixWorld ); }; // add "envMap" material property so the renderer can evaluate it like for built-in materials Object.defineProperty( boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } } ); objects.update( boxMesh ); } _e1$1.copy( scene.backgroundRotation ); // accommodate left-handed frame _e1$1.x *= - 1; _e1$1.y *= - 1; _e1$1.z *= - 1; if ( background.isCubeTexture && background.isRenderTargetTexture === false ) { // environment maps which are not cube render targets or PMREMs follow a different convention _e1$1.y *= - 1; _e1$1.z *= - 1; } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = ( background.isCubeTexture && background.isRenderTargetTexture === false ) ? - 1 : 1; boxMesh.material.uniforms.backgroundBlurriness.value = scene.backgroundBlurriness; boxMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; boxMesh.material.uniforms.backgroundRotation.value.setFromMatrix4( _m1$1.makeRotationFromEuler( _e1$1 ) ); boxMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } boxMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); } else if ( background && background.isTexture ) { if ( planeMesh === undefined ) { planeMesh = new Mesh( new PlaneGeometry( 2, 2 ), new ShaderMaterial( { name: 'BackgroundMaterial', uniforms: cloneUniforms( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false } ) ); planeMesh.geometry.deleteAttribute( 'normal' ); // add "map" material property so the renderer can evaluate it like for built-in materials Object.defineProperty( planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } } ); objects.update( planeMesh ); } planeMesh.material.uniforms.t2D.value = background; planeMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; planeMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; if ( background.matrixAutoUpdate === true ) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } planeMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); } } function setClear( color, alpha ) { color.getRGB( _rgb, getUnlitUniformColorSpace( renderer ) ); state.buffers.color.setClear( _rgb.r, _rgb.g, _rgb.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha = 1 ) { clearColor.set( color ); clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render }; } function WebGLBindingStates( gl, extensions, attributes, capabilities ) { const maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); const extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' ); const vaoAvailable = capabilities.isWebGL2 || extension !== null; const bindingStates = {}; const defaultState = createBindingState( null ); let currentState = defaultState; let forceUpdate = false; function setup( object, material, program, geometry, index ) { let updateBuffers = false; if ( vaoAvailable ) { const state = getBindingState( geometry, program, material ); if ( currentState !== state ) { currentState = state; bindVertexArrayObject( currentState.object ); } updateBuffers = needsUpdate( object, geometry, program, index ); if ( updateBuffers ) saveCache( object, geometry, program, index ); } else { const wireframe = ( material.wireframe === true ); if ( currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe ) { currentState.geometry = geometry.id; currentState.program = program.id; currentState.wireframe = wireframe; updateBuffers = true; } } if ( index !== null ) { attributes.update( index, gl.ELEMENT_ARRAY_BUFFER ); } if ( updateBuffers || forceUpdate ) { forceUpdate = false; setupVertexAttributes( object, material, program, geometry ); if ( index !== null ) { gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, attributes.get( index ).buffer ); } } } function createVertexArrayObject() { if ( capabilities.isWebGL2 ) return gl.createVertexArray(); return extension.createVertexArrayOES(); } function bindVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.bindVertexArray( vao ); return extension.bindVertexArrayOES( vao ); } function deleteVertexArrayObject( vao ) { if ( capabilities.isWebGL2 ) return gl.deleteVertexArray( vao ); return extension.deleteVertexArrayOES( vao ); } function getBindingState( geometry, program, material ) { const wireframe = ( material.wireframe === true ); let programMap = bindingStates[ geometry.id ]; if ( programMap === undefined ) { programMap = {}; bindingStates[ geometry.id ] = programMap; } let stateMap = programMap[ program.id ]; if ( stateMap === undefined ) { stateMap = {}; programMap[ program.id ] = stateMap; } let state = stateMap[ wireframe ]; if ( state === undefined ) { state = createBindingState( createVertexArrayObject() ); stateMap[ wireframe ] = state; } return state; } function createBindingState( vao ) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for ( let i = 0; i < maxVertexAttributes; i ++ ) { newAttributes[ i ] = 0; enabledAttributes[ i ] = 0; attributeDivisors[ i ] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate( object, geometry, program, index ) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { const cachedAttribute = cachedAttributes[ name ]; let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( cachedAttribute === undefined ) return true; if ( cachedAttribute.attribute !== geometryAttribute ) return true; if ( geometryAttribute && cachedAttribute.data !== geometryAttribute.data ) return true; attributesNum ++; } } if ( currentState.attributesNum !== attributesNum ) return true; if ( currentState.index !== index ) return true; return false; } function saveCache( object, geometry, program, index ) { const cache = {}; const attributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let attribute = attributes[ name ]; if ( attribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) attribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) attribute = object.instanceColor; } const data = {}; data.attribute = attribute; if ( attribute && attribute.data ) { data.data = attribute.data; } cache[ name ] = data; attributesNum ++; } } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } function initAttributes() { const newAttributes = currentState.newAttributes; for ( let i = 0, il = newAttributes.length; i < il; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { enableAttributeAndDivisor( attribute, 0 ); } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { const extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' ); extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function vertexAttribPointer( index, size, type, normalized, stride, offset, integer ) { if ( integer === true ) { gl.vertexAttribIPointer( index, size, type, stride, offset ); } else { gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); } } function setupVertexAttributes( object, material, program, geometry ) { if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) { if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) return; } initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( geometryAttribute !== undefined ) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get( geometryAttribute ); // TODO Attribute may not be available on context restore if ( attribute === undefined ) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; // check for integer attributes (WebGL 2 only) const integer = ( capabilities.isWebGL2 === true && ( type === gl.INT || type === gl.UNSIGNED_INT || geometryAttribute.gpuType === IntType ) ); if ( geometryAttribute.isInterleavedBufferAttribute ) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if ( data.isInstancedInterleavedBuffer ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, data.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, ( offset + ( size / programAttribute.locationSize ) * i ) * bytesPerElement, integer ); } } else { if ( geometryAttribute.isInstancedBufferAttribute ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, geometryAttribute.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, ( size / programAttribute.locationSize ) * i * bytesPerElement, integer ); } } } else if ( materialDefaultAttributeValues !== undefined ) { const value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: gl.vertexAttrib2fv( programAttribute.location, value ); break; case 3: gl.vertexAttrib3fv( programAttribute.location, value ); break; case 4: gl.vertexAttrib4fv( programAttribute.location, value ); break; default: gl.vertexAttrib1fv( programAttribute.location, value ); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometryId ]; } } function releaseStatesOfGeometry( geometry ) { if ( bindingStates[ geometry.id ] === undefined ) return; const programMap = bindingStates[ geometry.id ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometry.id ]; } function releaseStatesOfProgram( program ) { for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; if ( programMap[ program.id ] === undefined ) continue; const stateMap = programMap[ program.id ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ program.id ]; } } function reset() { resetDefaultState(); forceUpdate = true; if ( currentState === defaultState ) return; currentState = defaultState; bindVertexArrayObject( currentState.object ); } // for backward-compatibility function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawArraysInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawArraysInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, start, count, primcount ); info.update( count, mode, primcount ); } function renderMultiDraw( starts, counts, drawCount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); if ( extension === null ) { for ( let i = 0; i < drawCount; i ++ ) { this.render( starts[ i ], counts[ i ] ); } } else { extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } info.update( elementCount, mode, 1 ); } } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; } function WebGLCapabilities( gl, extensions, parameters ) { let maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl.constructor.name === 'WebGL2RenderingContext'; let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; const maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } const drawBuffers = isWebGL2 || extensions.has( 'WEBGL_draw_buffers' ); const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); const maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); const maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); const maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); const maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); const maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); const maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); const maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); const vertexTextures = maxVertexTextures > 0; const floatFragmentTextures = isWebGL2 || extensions.has( 'OES_texture_float' ); const floatVertexTextures = vertexTextures && floatFragmentTextures; const maxSamples = isWebGL2 ? gl.getParameter( gl.MAX_SAMPLES ) : 0; return { isWebGL2: isWebGL2, drawBuffers: drawBuffers, getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures, maxSamples: maxSamples }; } function WebGLClipping( properties ) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function ( planes, enableLocalClipping ) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function () { renderingShadows = false; }; this.setGlobalState = function ( planes, camera ) { globalState = projectPlanes( planes, camera, 0 ); }; this.setState = function ( material, camera, useCache ) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get( material ); if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, useCache ); for ( let i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps( renderer ) { let cubemaps = new WeakMap(); function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } return texture; } function get( texture ) { if ( texture && texture.isTexture ) { const mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { if ( cubemaps.has( texture ) ) { const cubemap = cubemaps.get( texture ).texture; return mapTextureMapping( cubemap, texture.mapping ); } else { const image = texture.image; if ( image && image.height > 0 ) { const renderTarget = new WebGLCubeRenderTarget( image.height ); renderTarget.fromEquirectangularTexture( renderer, texture ); cubemaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return mapTextureMapping( renderTarget.texture, texture.mapping ); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemap = cubemaps.get( texture ); if ( cubemap !== undefined ) { cubemaps.delete( texture ); cubemap.dispose(); } } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } class OrthographicCamera extends Camera { constructor( left = - 1, right = 1, top = 1, bottom = - 1, near = 0.1, far = 2000 ) { super(); this.isOrthographicCamera = true; this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; } setViewOffset( fullWidth, fullHeight, x, y, width, height ) { if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = ( this.right - this.left ) / ( 2 * this.zoom ); const dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); const cx = ( this.right + this.left ) / 2; const cy = ( this.top + this.bottom ) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if ( this.view !== null && this.view.enabled ) { const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far, this.coordinateSystem ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } const LOD_MIN = 4; // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); const _clearColor = /*@__PURE__*/ new Color(); let _oldTarget = null; let _oldActiveCubeFace = 0; let _oldActiveMipmapLevel = 0; // Golden Ratio const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3( 1, 1, 1 ), /*@__PURE__*/ new Vector3( - 1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, - 1 ), /*@__PURE__*/ new Vector3( - 1, 1, - 1 ), /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._lodMax = 0; this._cubeSize = 0; this._lodPlanes = []; this._sizeLods = []; this._sigmas = []; this._blurMaterial = null; this._cubemapMaterial = null; this._equirectMaterial = null; this._compileMaterial( this._blurMaterial ); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); this._setSize( 256 ); const cubeUVRenderTarget = this._allocateTargets(); cubeUVRenderTarget.depthBuffer = true; this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. * The smallest supported equirectangular image size is 64 x 32. */ fromEquirectangular( equirectangular, renderTarget = null ) { return this._fromTexture( equirectangular, renderTarget ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. * The smallest supported cube size is 16 x 16. */ fromCubemap( cubemap, renderTarget = null ) { return this._fromTexture( cubemap, renderTarget ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial(); this._compileMaterial( this._cubemapMaterial ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial(); this._compileMaterial( this._equirectMaterial ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose(); if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); } // private interface _setSize( cubeSize ) { this._lodMax = Math.floor( Math.log2( cubeSize ) ); this._cubeSize = Math.pow( 2, this._lodMax ); } _dispose() { if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); for ( let i = 0; i < this._lodPlanes.length; i ++ ) { this._lodPlanes[ i ].dispose(); } } _cleanup( outputTarget ) { this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture, renderTarget ) { if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); } else { // Equirectangular this._setSize( texture.image.width / 4 ); } _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); const cubeUVRenderTarget = renderTarget || this._allocateTargets(); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets() { const width = 3 * Math.max( this._cubeSize, 16 * 7 ); const height = 4 * this._cubeSize; const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, colorSpace: LinearSRGBColorSpace, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget( width, height, params ); if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) { if ( this._pingPongRenderTarget !== null ) { this._dispose(); } this._pingPongRenderTarget = _createRenderTarget( width, height, params ); const { _lodMax } = this; ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes( _lodMax ) ); this._blurMaterial = _getBlurShader( _lodMax, width, height ); } return cubeUVRenderTarget; } _compileMaterial( material ) { const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); const upSign = [ 1, - 1, 1, 1, 1, 1 ]; const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const toneMapping = renderer.toneMapping; renderer.getClearColor( _clearColor ); renderer.toneMapping = NoToneMapping; renderer.autoClear = false; const backgroundMaterial = new MeshBasicMaterial( { name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false, } ); const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundMaterial.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy( _clearColor ); useSolidColor = true; } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col === 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col === 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } const size = this._cubeSize; _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); renderer.setRenderTarget( cubeUVRenderTarget ); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } renderer.render( scene, cubeCamera ); } backgroundBox.geometry.dispose(); backgroundBox.material.dispose(); renderer.toneMapping = toneMapping; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); if ( isCubeTexture ) { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial(); } this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? - 1 : 1; } else { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial(); } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; const mesh = new Mesh( this._lodPlanes[ 0 ], material ); const uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; const size = this._cubeSize; _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for ( let i = 1; i < this._lodPlanes.length; i ++ ) { const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial ); const blurUniforms = blurMaterial.uniforms; const pixels = this._sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i === 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } const { _lodMax } = this; blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = _lodMax - lodIn; const outputSize = this._sizeLods[ lodOut ]; const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); const y = 4 * ( this._cubeSize - outputSize ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); } } function _createPlanes( lodMax ) { const lodPlanes = []; const sizeLods = []; const sigmas = []; let lod = lodMax; const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; for ( let i = 0; i < totalLods; i ++ ) { const sizeLod = Math.pow( 2, lod ); sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > lodMax - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; } else if ( i === 0 ) { sigma = 0; } sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 2 ); const min = - texelSize; const max = 1 + texelSize; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : - 1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); const fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); lodPlanes.push( planes ); if ( lod > LOD_MIN ) { lod --; } } return { lodPlanes, sizeLods, sigmas }; } function _createRenderTarget( width, height, params ) { const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader( lodMax, width, height ) { const weights = new Float32Array( MAX_SAMPLES ); const poleAxis = new Vector3( 0, 1, 0 ); const shaderMaterial = new ShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': MAX_SAMPLES, 'CUBEUV_TEXEL_WIDTH': 1.0 / width, 'CUBEUV_TEXEL_HEIGHT': 1.0 / height, 'CUBEUV_MAX_MIP': `${lodMax}.0`, }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectMaterial() { return new ShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; #include void main() { vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCubemapMaterial() { return new ShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'flipEnvMap': { value: - 1 } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; uniform float flipEnvMap; varying vec3 vOutputDirection; uniform samplerCube envMap; void main() { gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } `; } function WebGLCubeUVMaps( renderer ) { let cubeUVmaps = new WeakMap(); let pmremGenerator = null; function get( texture ) { if ( texture && texture.isTexture ) { const mapping = texture.mapping; const isEquirectMap = ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ); const isCubeMap = ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping ); // equirect/cube map to cubeUV conversion if ( isEquirectMap || isCubeMap ) { if ( texture.isRenderTargetTexture && texture.needsPMREMUpdate === true ) { texture.needsPMREMUpdate = false; let renderTarget = cubeUVmaps.get( texture ); if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture, renderTarget ) : pmremGenerator.fromCubemap( texture, renderTarget ); cubeUVmaps.set( texture, renderTarget ); return renderTarget.texture; } else { if ( cubeUVmaps.has( texture ) ) { return cubeUVmaps.get( texture ).texture; } else { const image = texture.image; if ( ( isEquirectMap && image && image.height > 0 ) || ( isCubeMap && image && isCubeTextureComplete( image ) ) ) { if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator( renderer ); const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture ) : pmremGenerator.fromCubemap( texture ); cubeUVmaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return renderTarget.texture; } else { // image not yet ready. try the conversion next frame return null; } } } } } return texture; } function isCubeTextureComplete( image ) { let count = 0; const length = 6; for ( let i = 0; i < length; i ++ ) { if ( image[ i ] !== undefined ) count ++; } return count === length; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemapUV = cubeUVmaps.get( texture ); if ( cubemapUV !== undefined ) { cubeUVmaps.delete( texture ); cubemapUV.dispose(); } } function dispose() { cubeUVmaps = new WeakMap(); if ( pmremGenerator !== null ) { pmremGenerator.dispose(); pmremGenerator = null; } } return { get: get, dispose: dispose }; } function WebGLExtensions( gl ) { const extensions = {}; function getExtension( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } let extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; default: extension = gl.getExtension( name ); } extensions[ name ] = extension; return extension; } return { has: function ( name ) { return getExtension( name ) !== null; }, init: function ( capabilities ) { if ( capabilities.isWebGL2 ) { getExtension( 'EXT_color_buffer_float' ); getExtension( 'WEBGL_clip_cull_distance' ); } else { getExtension( 'WEBGL_depth_texture' ); getExtension( 'OES_texture_float' ); getExtension( 'OES_texture_half_float' ); getExtension( 'OES_texture_half_float_linear' ); getExtension( 'OES_standard_derivatives' ); getExtension( 'OES_element_index_uint' ); getExtension( 'OES_vertex_array_object' ); getExtension( 'ANGLE_instanced_arrays' ); } getExtension( 'OES_texture_float_linear' ); getExtension( 'EXT_color_buffer_half_float' ); getExtension( 'WEBGL_multisampled_render_to_texture' ); }, get: function ( name ) { const extension = getExtension( name ); if ( extension === null ) { console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } return extension; } }; } function WebGLGeometries( gl, attributes, info, bindingStates ) { const geometries = {}; const wireframeAttributes = new WeakMap(); function onGeometryDispose( event ) { const geometry = event.target; if ( geometry.index !== null ) { attributes.remove( geometry.index ); } for ( const name in geometry.attributes ) { attributes.remove( geometry.attributes[ name ] ); } for ( const name in geometry.morphAttributes ) { const array = geometry.morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.remove( array[ i ] ); } } geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; const attribute = wireframeAttributes.get( geometry ); if ( attribute ) { attributes.remove( attribute ); wireframeAttributes.delete( geometry ); } bindingStates.releaseStatesOfGeometry( geometry ); if ( geometry.isInstancedBufferGeometry === true ) { delete geometry._maxInstanceCount; } // info.memory.geometries --; } function get( object, geometry ) { if ( geometries[ geometry.id ] === true ) return geometry; geometry.addEventListener( 'dispose', onGeometryDispose ); geometries[ geometry.id ] = true; info.memory.geometries ++; return geometry; } function update( geometry ) { const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for ( const name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER ); } // morph targets const morphAttributes = geometry.morphAttributes; for ( const name in morphAttributes ) { const array = morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], gl.ARRAY_BUFFER ); } } } function updateWireframeAttribute( geometry ) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if ( geometryIndex !== null ) { const array = geometryIndex.array; version = geometryIndex.version; for ( let i = 0, l = array.length; i < l; i += 3 ) { const a = array[ i + 0 ]; const b = array[ i + 1 ]; const c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else if ( geometryPosition !== undefined ) { const array = geometryPosition.array; version = geometryPosition.version; for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push( a, b, b, c, c, a ); } } else { return; } const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get( geometry ); if ( previousAttribute ) attributes.remove( previousAttribute ); // wireframeAttributes.set( geometry, attribute ); } function getWireframeAttribute( geometry ) { const currentAttribute = wireframeAttributes.get( geometry ); if ( currentAttribute ) { const geometryIndex = geometry.index; if ( geometryIndex !== null ) { // if the attribute is obsolete, create a new one if ( currentAttribute.version < geometryIndex.version ) { updateWireframeAttribute( geometry ); } } } else { updateWireframeAttribute( geometry ); } return wireframeAttributes.get( geometry ); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { const isWebGL2 = capabilities.isWebGL2; let mode; function setMode( value ) { mode = value; } let type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; let extension, methodName; if ( isWebGL2 ) { extension = gl; methodName = 'drawElementsInstanced'; } else { extension = extensions.get( 'ANGLE_instanced_arrays' ); methodName = 'drawElementsInstancedANGLE'; if ( extension === null ) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); return; } } extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount ); info.update( count, mode, primcount ); } function renderMultiDraw( starts, counts, drawCount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); if ( extension === null ) { for ( let i = 0; i < drawCount; i ++ ) { this.render( starts[ i ] / bytesPerElement, counts[ i ] ); } } else { extension.multiDrawElementsWEBGL( mode, counts, 0, type, starts, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } info.update( elementCount, mode, 1 ); } } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; } function WebGLInfo( gl ) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update( count, mode, instanceCount ) { render.calls ++; switch ( mode ) { case gl.TRIANGLES: render.triangles += instanceCount * ( count / 3 ); break; case gl.LINES: render.lines += instanceCount * ( count / 2 ); break; case gl.LINE_STRIP: render.lines += instanceCount * ( count - 1 ); break; case gl.LINE_LOOP: render.lines += instanceCount * count; break; case gl.POINTS: render.points += instanceCount * count; break; default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break; } } function reset() { render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function numericalSort( a, b ) { return a[ 0 ] - b[ 0 ]; } function absNumericalSort( a, b ) { return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] ); } function WebGLMorphtargets( gl, capabilities, textures ) { const influencesList = {}; const morphInfluences = new Float32Array( 8 ); const morphTextures = new WeakMap(); const morph = new Vector4(); const workInfluences = []; for ( let i = 0; i < 8; i ++ ) { workInfluences[ i ] = [ i, 0 ]; } function update( object, geometry, program ) { const objectInfluences = object.morphTargetInfluences; if ( capabilities.isWebGL2 === true ) { // instead of using attributes, the WebGL 2 code path encodes morph targets // into an array of data textures. Each layer represents a single morph target. const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let entry = morphTextures.get( geometry ); if ( entry === undefined || entry.count !== morphTargetsCount ) { if ( entry !== undefined ) entry.texture.dispose(); const hasMorphPosition = geometry.morphAttributes.position !== undefined; const hasMorphNormals = geometry.morphAttributes.normal !== undefined; const hasMorphColors = geometry.morphAttributes.color !== undefined; const morphTargets = geometry.morphAttributes.position || []; const morphNormals = geometry.morphAttributes.normal || []; const morphColors = geometry.morphAttributes.color || []; let vertexDataCount = 0; if ( hasMorphPosition === true ) vertexDataCount = 1; if ( hasMorphNormals === true ) vertexDataCount = 2; if ( hasMorphColors === true ) vertexDataCount = 3; let width = geometry.attributes.position.count * vertexDataCount; let height = 1; if ( width > capabilities.maxTextureSize ) { height = Math.ceil( width / capabilities.maxTextureSize ); width = capabilities.maxTextureSize; } const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); const texture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); texture.type = FloatType; texture.needsUpdate = true; // fill buffer const vertexDataStride = vertexDataCount * 4; for ( let i = 0; i < morphTargetsCount; i ++ ) { const morphTarget = morphTargets[ i ]; const morphNormal = morphNormals[ i ]; const morphColor = morphColors[ i ]; const offset = width * height * 4 * i; for ( let j = 0; j < morphTarget.count; j ++ ) { const stride = j * vertexDataStride; if ( hasMorphPosition === true ) { morph.fromBufferAttribute( morphTarget, j ); buffer[ offset + stride + 0 ] = morph.x; buffer[ offset + stride + 1 ] = morph.y; buffer[ offset + stride + 2 ] = morph.z; buffer[ offset + stride + 3 ] = 0; } if ( hasMorphNormals === true ) { morph.fromBufferAttribute( morphNormal, j ); buffer[ offset + stride + 4 ] = morph.x; buffer[ offset + stride + 5 ] = morph.y; buffer[ offset + stride + 6 ] = morph.z; buffer[ offset + stride + 7 ] = 0; } if ( hasMorphColors === true ) { morph.fromBufferAttribute( morphColor, j ); buffer[ offset + stride + 8 ] = morph.x; buffer[ offset + stride + 9 ] = morph.y; buffer[ offset + stride + 10 ] = morph.z; buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? morph.w : 1; } } } entry = { count: morphTargetsCount, texture: texture, size: new Vector2( width, height ) }; morphTextures.set( geometry, entry ); function disposeTexture() { texture.dispose(); morphTextures.delete( geometry ); geometry.removeEventListener( 'dispose', disposeTexture ); } geometry.addEventListener( 'dispose', disposeTexture ); } // if ( object.isInstancedMesh === true && object.morphTexture !== null ) { program.getUniforms().setValue( gl, 'morphTexture', object.morphTexture, textures ); } else { let morphInfluencesSum = 0; for ( let i = 0; i < objectInfluences.length; i ++ ) { morphInfluencesSum += objectInfluences[ i ]; } const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', objectInfluences ); } program.getUniforms().setValue( gl, 'morphTargetsTexture', entry.texture, textures ); program.getUniforms().setValue( gl, 'morphTargetsTextureSize', entry.size ); } else { // When object doesn't have morph target influences defined, we treat it as a 0-length array // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences const length = objectInfluences === undefined ? 0 : objectInfluences.length; let influences = influencesList[ geometry.id ]; if ( influences === undefined || influences.length !== length ) { // initialise list influences = []; for ( let i = 0; i < length; i ++ ) { influences[ i ] = [ i, 0 ]; } influencesList[ geometry.id ] = influences; } // Collect influences for ( let i = 0; i < length; i ++ ) { const influence = influences[ i ]; influence[ 0 ] = i; influence[ 1 ] = objectInfluences[ i ]; } influences.sort( absNumericalSort ); for ( let i = 0; i < 8; i ++ ) { if ( i < length && influences[ i ][ 1 ] ) { workInfluences[ i ][ 0 ] = influences[ i ][ 0 ]; workInfluences[ i ][ 1 ] = influences[ i ][ 1 ]; } else { workInfluences[ i ][ 0 ] = Number.MAX_SAFE_INTEGER; workInfluences[ i ][ 1 ] = 0; } } workInfluences.sort( numericalSort ); const morphTargets = geometry.morphAttributes.position; const morphNormals = geometry.morphAttributes.normal; let morphInfluencesSum = 0; for ( let i = 0; i < 8; i ++ ) { const influence = workInfluences[ i ]; const index = influence[ 0 ]; const value = influence[ 1 ]; if ( index !== Number.MAX_SAFE_INTEGER && value ) { if ( morphTargets && geometry.getAttribute( 'morphTarget' + i ) !== morphTargets[ index ] ) { geometry.setAttribute( 'morphTarget' + i, morphTargets[ index ] ); } if ( morphNormals && geometry.getAttribute( 'morphNormal' + i ) !== morphNormals[ index ] ) { geometry.setAttribute( 'morphNormal' + i, morphNormals[ index ] ); } morphInfluences[ i ] = value; morphInfluencesSum += value; } else { if ( morphTargets && geometry.hasAttribute( 'morphTarget' + i ) === true ) { geometry.deleteAttribute( 'morphTarget' + i ); } if ( morphNormals && geometry.hasAttribute( 'morphNormal' + i ) === true ) { geometry.deleteAttribute( 'morphNormal' + i ); } morphInfluences[ i ] = 0; } } // GLSL shader uses formula baseinfluence * base + sum(target * influence) // This allows us to switch between absolute morphs and relative morphs without changing shader code // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences ); } } return { update: update }; } function WebGLObjects( gl, geometries, attributes, info ) { let updateMap = new WeakMap(); function update( object ) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateMap.get( buffergeometry ) !== frame ) { geometries.update( buffergeometry ); updateMap.set( buffergeometry, frame ); } if ( object.isInstancedMesh ) { if ( object.hasEventListener( 'dispose', onInstancedMeshDispose ) === false ) { object.addEventListener( 'dispose', onInstancedMeshDispose ); } if ( updateMap.get( object ) !== frame ) { attributes.update( object.instanceMatrix, gl.ARRAY_BUFFER ); if ( object.instanceColor !== null ) { attributes.update( object.instanceColor, gl.ARRAY_BUFFER ); } updateMap.set( object, frame ); } } if ( object.isSkinnedMesh ) { const skeleton = object.skeleton; if ( updateMap.get( skeleton ) !== frame ) { skeleton.update(); updateMap.set( skeleton, frame ); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } function onInstancedMeshDispose( event ) { const instancedMesh = event.target; instancedMesh.removeEventListener( 'dispose', onInstancedMeshDispose ); attributes.remove( instancedMesh.instanceMatrix ); if ( instancedMesh.instanceColor !== null ) attributes.remove( instancedMesh.instanceColor ); } return { update: update, dispose: dispose }; } class DepthTexture extends Texture { constructor( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat; if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); } if ( type === undefined && format === DepthFormat ) type = UnsignedIntType; if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type; super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isDepthTexture = true; this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; this.compareFunction = null; } copy( source ) { super.copy( source ); this.compareFunction = source.compareFunction; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.compareFunction !== null ) data.compareFunction = this.compareFunction; return data; } } /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = /*@__PURE__*/ new Texture(); const emptyShadowTexture = /*@__PURE__*/ new DepthTexture( 1, 1 ); emptyShadowTexture.compareFunction = LessEqualCompare; const emptyArrayTexture = /*@__PURE__*/ new DataArrayTexture(); const empty3dTexture = /*@__PURE__*/ new Data3DTexture(); const emptyCubeTexture = /*@__PURE__*/ new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = []; const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array( 16 ); const mat3array = new Float32Array( 9 ); const mat2array = new Float32Array( 4 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { const firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize; let r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } function arraysEqual( a, b ) { if ( a.length !== b.length ) return false; for ( let i = 0, l = a.length; i < l; i ++ ) { if ( a[ i ] !== b[ i ] ) return false; } return true; } function copyArray( a, b ) { for ( let i = 0, l = b.length; i < l; i ++ ) { a[ i ] = b[ i ]; } } // Texture unit allocation function allocTexUnits( textures, n ) { let r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( let i = 0; i !== n; ++ i ) { r[ i ] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1f( this.addr, v ); cache[ 0 ] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2f( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2fv( this.addr, v ); copyArray( cache, v ); } } function setValueV3f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3f( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else if ( v.r !== undefined ) { if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { gl.uniform3f( this.addr, v.r, v.g, v.b ); cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3fv( this.addr, v ); copyArray( cache, v ); } } function setValueV4f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4fv( this.addr, v ); copyArray( cache, v ); } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix2fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat2array.set( elements ); gl.uniformMatrix2fv( this.addr, false, mat2array ); copyArray( cache, elements ); } } function setValueM3( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix3fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat3array.set( elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); copyArray( cache, elements ); } } function setValueM4( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix4fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat4array.set( elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); copyArray( cache, elements ); } } // Single integer / boolean function setValueV1i( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1i( this.addr, v ); cache[ 0 ] = v; } // Single integer / boolean vector (from flat array or THREE.VectorN) function setValueV2i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2i( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2iv( this.addr, v ); copyArray( cache, v ); } } function setValueV3i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3i( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3iv( this.addr, v ); copyArray( cache, v ); } } function setValueV4i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4i( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4iv( this.addr, v ); copyArray( cache, v ); } } // Single unsigned integer function setValueV1ui( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1ui( this.addr, v ); cache[ 0 ] = v; } // Single unsigned integer vector (from flat array or THREE.VectorN) function setValueV2ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2ui( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2uiv( this.addr, v ); copyArray( cache, v ); } } function setValueV3ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3ui( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3uiv( this.addr, v ); copyArray( cache, v ); } } function setValueV4ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4ui( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4uiv( this.addr, v ); copyArray( cache, v ); } } // Single texture (2D / Cube) function setValueT1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } const emptyTexture2D = ( this.type === gl.SAMPLER_2D_SHADOW ) ? emptyShadowTexture : emptyTexture; textures.setTexture2D( v || emptyTexture2D, unit ); } function setValueT3D1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture3D( v || empty3dTexture, unit ); } function setValueT6( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTextureCube( v || emptyCubeTexture, unit ); } function setValueT2DArray1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2DArray( v || emptyArrayTexture, unit ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8dc6: return setValueV2ui; // _VEC2 case 0x8dc7: return setValueV3ui; // _VEC3 case 0x8dc8: return setValueV4ui; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray( gl, v ) { gl.uniform1fv( this.addr, v ); } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray( gl, v ) { const data = flatten( v, this.size, 2 ); gl.uniform2fv( this.addr, data ); } function setValueV3fArray( gl, v ) { const data = flatten( v, this.size, 3 ); gl.uniform3fv( this.addr, data ); } function setValueV4fArray( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniform4fv( this.addr, data ); } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniformMatrix2fv( this.addr, false, data ); } function setValueM3Array( gl, v ) { const data = flatten( v, this.size, 9 ); gl.uniformMatrix3fv( this.addr, false, data ); } function setValueM4Array( gl, v ) { const data = flatten( v, this.size, 16 ); gl.uniformMatrix4fv( this.addr, false, data ); } // Array of integer / boolean function setValueV1iArray( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of integer / boolean vectors (from flat array) function setValueV2iArray( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValueV3iArray( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValueV4iArray( gl, v ) { gl.uniform4iv( this.addr, v ); } // Array of unsigned integer function setValueV1uiArray( gl, v ) { gl.uniform1uiv( this.addr, v ); } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray( gl, v ) { gl.uniform2uiv( this.addr, v ); } function setValueV3uiArray( gl, v ) { gl.uniform3uiv( this.addr, v ); } function setValueV4uiArray( gl, v ) { gl.uniform4uiv( this.addr, v ); } // Array of textures (2D / 3D / Cube / 2DArray) function setValueT1Array( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT3DArray( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture3D( v[ i ] || empty3dTexture, units[ i ] ); } } function setValueT6Array( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } function setValueT2DArrayArray( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture2DArray( v[ i ] || emptyArrayTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x1405: return setValueV1uiArray; // UINT case 0x8dc6: return setValueV2uiArray; // _VEC2 case 0x8dc7: return setValueV3uiArray; // _VEC3 case 0x8dc8: return setValueV4uiArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3DArray; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArrayArray; } } // --- Uniform Classes --- class SingleUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class PureArrayUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class StructuredUniform { constructor( id ) { this.id = id; this.seq = []; this.map = {}; } setValue( gl, value, textures ) { const seq = this.seq; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; u.setValue( gl, value[ u.id ], textures ); } } } // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { const path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while ( true ) { const match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex; let id = match[ 1 ]; const idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist const map = container.map; let next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container class WebGLUniforms { constructor( gl, program ) { this.seq = []; this.map = {}; const n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( let i = 0; i < n; ++ i ) { const info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name ); parseUniform( info, addr, this ); } } setValue( gl, name, value, textures ) { const u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, textures ); } setOptional( gl, object, name ) { const v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); } static upload( gl, seq, values, textures ) { for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, textures ); } } } static seqWithValue( seq, values ) { const r = []; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; } } function WebGLShader( gl, type, string ) { const shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); return shader; } // From https://www.khronos.org/registry/webgl/extensions/KHR_parallel_shader_compile/ const COMPLETION_STATUS_KHR = 0x91B1; let programIdCount = 0; function handleSource( string, errorLine ) { const lines = string.split( '\n' ); const lines2 = []; const from = Math.max( errorLine - 6, 0 ); const to = Math.min( errorLine + 6, lines.length ); for ( let i = from; i < to; i ++ ) { const line = i + 1; lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); } return lines2.join( '\n' ); } function getEncodingComponents( colorSpace ) { const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const encodingPrimaries = ColorManagement.getPrimaries( colorSpace ); let gamutMapping; if ( workingPrimaries === encodingPrimaries ) { gamutMapping = ''; } else if ( workingPrimaries === P3Primaries && encodingPrimaries === Rec709Primaries ) { gamutMapping = 'LinearDisplayP3ToLinearSRGB'; } else if ( workingPrimaries === Rec709Primaries && encodingPrimaries === P3Primaries ) { gamutMapping = 'LinearSRGBToLinearDisplayP3'; } switch ( colorSpace ) { case LinearSRGBColorSpace: case LinearDisplayP3ColorSpace: return [ gamutMapping, 'LinearTransferOETF' ]; case SRGBColorSpace: case DisplayP3ColorSpace: return [ gamutMapping, 'sRGBTransferOETF' ]; default: console.warn( 'THREE.WebGLProgram: Unsupported color space:', colorSpace ); return [ gamutMapping, 'LinearTransferOETF' ]; } } function getShaderErrors( gl, shader, type ) { const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS ); const errors = gl.getShaderInfoLog( shader ).trim(); if ( status && errors === '' ) return ''; const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); if ( errorMatches ) { // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); const errorLine = parseInt( errorMatches[ 1 ] ); return type.toUpperCase() + '\n\n' + errors + '\n\n' + handleSource( gl.getShaderSource( shader ), errorLine ); } else { return errors; } } function getTexelEncodingFunction( functionName, colorSpace ) { const components = getEncodingComponents( colorSpace ); return `vec4 ${functionName}( vec4 value ) { return ${components[ 0 ]}( ${components[ 1 ]}( value ) ); }`; } function getToneMappingFunction( functionName, toneMapping ) { let toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'OptimizedCineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case AgXToneMapping: toneMappingName = 'AgX'; break; case NeutralToneMapping: toneMappingName = 'Neutral'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } function generateExtensions( parameters ) { const chunks = [ ( parameters.extensionDerivatives || !! parameters.envMapCubeUVHeight || parameters.bumpMap || parameters.normalMapTangentSpace || parameters.clearcoatNormalMap || parameters.flatShading || parameters.alphaToCoverage || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '', ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '', ( parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateVertexExtensions( parameters ) { const chunks = [ parameters.extensionClipCullDistance ? '#extension GL_ANGLE_clip_cull_distance : require' : '', parameters.extensionMultiDraw ? '#extension GL_ANGLE_multi_draw : require' : '', ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { const chunks = []; for ( const name in defines ) { const value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program ) { const attributes = {}; const n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( let i = 0; i < n; i ++ ) { const info = gl.getActiveAttrib( program, i ); const name = info.name; let locationSize = 1; if ( info.type === gl.FLOAT_MAT2 ) locationSize = 2; if ( info.type === gl.FLOAT_MAT3 ) locationSize = 3; if ( info.type === gl.FLOAT_MAT4 ) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[ name ] = { type: info.type, location: gl.getAttribLocation( program, name ), locationSize: locationSize }; } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { const numSpotLightCoords = parameters.numSpotLightShadows + parameters.numSpotLightMaps - parameters.numSpotLightShadowsWithMaps; return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_SPOT_LIGHT_MAPS/g, parameters.numSpotLightMaps ) .replace( /NUM_SPOT_LIGHT_COORDS/g, numSpotLightCoords ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) .replace( /NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS/g, parameters.numSpotLightShadowsWithMaps ) .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); } function replaceClippingPlaneNums( string, parameters ) { return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes( string ) { return string.replace( includePattern, includeReplacer ); } const shaderChunkMap = new Map( [ [ 'encodings_fragment', 'colorspace_fragment' ], // @deprecated, r154 [ 'encodings_pars_fragment', 'colorspace_pars_fragment' ], // @deprecated, r154 [ 'output_fragment', 'opaque_fragment' ], // @deprecated, r154 ] ); function includeReplacer( match, include ) { let string = ShaderChunk[ include ]; if ( string === undefined ) { const newInclude = shaderChunkMap.get( include ); if ( newInclude !== undefined ) { string = ShaderChunk[ newInclude ]; console.warn( 'THREE.WebGLRenderer: Shader chunk "%s" has been deprecated. Use "%s" instead.', include, newInclude ); } else { throw new Error( 'Can not resolve #include <' + include + '>' ); } } return resolveIncludes( string ); } // Unroll Loops const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops( string ) { return string.replace( unrollLoopPattern, loopReplacer ); } function loopReplacer( match, start, end, snippet ) { let string = ''; for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) { string += snippet .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) .replace( /UNROLLED_LOOP_INDEX/g, i ); } return string; } // function generatePrecision( parameters ) { let precisionstring = `precision ${parameters.precision} float; precision ${parameters.precision} int; precision ${parameters.precision} sampler2D; precision ${parameters.precision} samplerCube; `; if ( parameters.isWebGL2 ) { precisionstring += `precision ${parameters.precision} sampler3D; precision ${parameters.precision} sampler2DArray; precision ${parameters.precision} sampler2DShadow; precision ${parameters.precision} samplerCubeShadow; precision ${parameters.precision} sampler2DArrayShadow; precision ${parameters.precision} isampler2D; precision ${parameters.precision} isampler3D; precision ${parameters.precision} isamplerCube; precision ${parameters.precision} isampler2DArray; precision ${parameters.precision} usampler2D; precision ${parameters.precision} usampler3D; precision ${parameters.precision} usamplerCube; precision ${parameters.precision} usampler2DArray; `; } if ( parameters.precision === 'highp' ) { precisionstring += '\n#define HIGH_PRECISION'; } else if ( parameters.precision === 'mediump' ) { precisionstring += '\n#define MEDIUM_PRECISION'; } else if ( parameters.precision === 'lowp' ) { precisionstring += '\n#define LOW_PRECISION'; } return precisionstring; } function generateShadowMapTypeDefine( parameters ) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if ( parameters.shadowMapType === VSMShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine( parameters ) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine( parameters ) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine( parameters ) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if ( parameters.envMap ) { switch ( parameters.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function generateCubeUVSize( parameters ) { const imageHeight = parameters.envMapCubeUVHeight; if ( imageHeight === null ) return null; const maxMip = Math.log2( imageHeight ) - 2; const texelHeight = 1.0 / imageHeight; const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); return { texelWidth, texelHeight, maxMip }; } function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { // TODO Send this event to Three.js DevTools // console.log( 'WebGLProgram', cacheKey ); const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); const envMapTypeDefine = generateEnvMapTypeDefine( parameters ); const envMapModeDefine = generateEnvMapModeDefine( parameters ); const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); const envMapCubeUVSize = generateCubeUVSize( parameters ); const customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters ); const customVertexExtensions = generateVertexExtensions( parameters ); const customDefines = generateDefines( defines ); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; if ( parameters.isRawShaderMaterial ) { prefixVertex = [ '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixVertex.length > 0 ) { prefixVertex += '\n'; } prefixFragment = [ customExtensions, '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixFragment.length > 0 ) { prefixFragment += '\n'; } } else { prefixVertex = [ generatePrecision( parameters ), '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.extensionClipCullDistance ? '#define USE_CLIP_DISTANCE' : '', parameters.batching ? '#define USE_BATCHING' : '', parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.instancingMorph ? '#define USE_INSTANCING_MORPH' : '', parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', parameters.displacementMap ? '#define USE_DISPLACEMENTMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.anisotropy ? '#define USE_ANISOTROPY' : '', parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaHash ? '#define USE_ALPHAHASH' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', // parameters.mapUv ? '#define MAP_UV ' + parameters.mapUv : '', parameters.alphaMapUv ? '#define ALPHAMAP_UV ' + parameters.alphaMapUv : '', parameters.lightMapUv ? '#define LIGHTMAP_UV ' + parameters.lightMapUv : '', parameters.aoMapUv ? '#define AOMAP_UV ' + parameters.aoMapUv : '', parameters.emissiveMapUv ? '#define EMISSIVEMAP_UV ' + parameters.emissiveMapUv : '', parameters.bumpMapUv ? '#define BUMPMAP_UV ' + parameters.bumpMapUv : '', parameters.normalMapUv ? '#define NORMALMAP_UV ' + parameters.normalMapUv : '', parameters.displacementMapUv ? '#define DISPLACEMENTMAP_UV ' + parameters.displacementMapUv : '', parameters.metalnessMapUv ? '#define METALNESSMAP_UV ' + parameters.metalnessMapUv : '', parameters.roughnessMapUv ? '#define ROUGHNESSMAP_UV ' + parameters.roughnessMapUv : '', parameters.anisotropyMapUv ? '#define ANISOTROPYMAP_UV ' + parameters.anisotropyMapUv : '', parameters.clearcoatMapUv ? '#define CLEARCOATMAP_UV ' + parameters.clearcoatMapUv : '', parameters.clearcoatNormalMapUv ? '#define CLEARCOAT_NORMALMAP_UV ' + parameters.clearcoatNormalMapUv : '', parameters.clearcoatRoughnessMapUv ? '#define CLEARCOAT_ROUGHNESSMAP_UV ' + parameters.clearcoatRoughnessMapUv : '', parameters.iridescenceMapUv ? '#define IRIDESCENCEMAP_UV ' + parameters.iridescenceMapUv : '', parameters.iridescenceThicknessMapUv ? '#define IRIDESCENCE_THICKNESSMAP_UV ' + parameters.iridescenceThicknessMapUv : '', parameters.sheenColorMapUv ? '#define SHEEN_COLORMAP_UV ' + parameters.sheenColorMapUv : '', parameters.sheenRoughnessMapUv ? '#define SHEEN_ROUGHNESSMAP_UV ' + parameters.sheenRoughnessMapUv : '', parameters.specularMapUv ? '#define SPECULARMAP_UV ' + parameters.specularMapUv : '', parameters.specularColorMapUv ? '#define SPECULAR_COLORMAP_UV ' + parameters.specularColorMapUv : '', parameters.specularIntensityMapUv ? '#define SPECULAR_INTENSITYMAP_UV ' + parameters.specularIntensityMapUv : '', parameters.transmissionMapUv ? '#define TRANSMISSIONMAP_UV ' + parameters.transmissionMapUv : '', parameters.thicknessMapUv ? '#define THICKNESSMAP_UV ' + parameters.thicknessMapUv : '', // parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUv1s ? '#define USE_UV1' : '', parameters.vertexUv2s ? '#define USE_UV2' : '', parameters.vertexUv3s ? '#define USE_UV3' : '', parameters.pointsUvs ? '#define USE_POINTS_UV' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', ( parameters.morphColors && parameters.isWebGL2 ) ? '#define USE_MORPHCOLORS' : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_TEXTURE' : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_TEXTURE_STRIDE ' + parameters.morphTextureStride : '', ( parameters.morphTargetsCount > 0 && parameters.isWebGL2 ) ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', parameters.useLegacyLights ? '#define LEGACY_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', '#ifdef USE_INSTANCING_MORPH', ' uniform sampler2D morphTexture;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_UV1', ' attribute vec2 uv1;', '#endif', '#ifdef USE_UV2', ' attribute vec2 uv2;', '#endif', '#ifdef USE_UV3', ' attribute vec2 uv3;', '#endif', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ customExtensions, generatePrecision( parameters ), '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.alphaToCoverage ? '#define ALPHA_TO_COVERAGE' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_WIDTH ' + envMapCubeUVSize.texelWidth : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_HEIGHT ' + envMapCubeUVSize.texelHeight : '', envMapCubeUVSize ? '#define CUBEUV_MAX_MIP ' + envMapCubeUVSize.maxMip + '.0' : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.anisotropy ? '#define USE_ANISOTROPY' : '', parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescence ? '#define USE_IRIDESCENCE' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.alphaHash ? '#define USE_ALPHAHASH' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUv1s ? '#define USE_UV1' : '', parameters.vertexUv2s ? '#define USE_UV2' : '', parameters.vertexUv3s ? '#define USE_UV3' : '', parameters.pointsUvs ? '#define USE_POINTS_UV' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', parameters.useLegacyLights ? '#define LEGACY_LIGHTS' : '', parameters.decodeVideoTexture ? '#define DECODE_VIDEO_TEXTURE' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', parameters.opaque ? '#define OPAQUE' : '', ShaderChunk[ 'colorspace_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputColorSpace ), parameters.useDepthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = resolveIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); fragmentShader = resolveIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); if ( parameters.isWebGL2 && parameters.isRawShaderMaterial !== true ) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = [ customVertexExtensions, 'precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex; prefixFragment = [ 'precision mediump sampler2DArray;', '#define varying in', ( parameters.glslVersion === GLSL3 ) ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); const glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( parameters.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); function onFirstUse( self ) { // check for link errors if ( renderer.debug.checkShaderErrors ) { const programLog = gl.getProgramInfoLog( program ).trim(); const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); let runnable = true; let haveDiagnostics = true; if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; if ( typeof renderer.debug.onShaderError === 'function' ) { renderer.debug.onShaderError( gl, program, glVertexShader, glFragmentShader ); } else { // default error reporting const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); console.error( 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter( program, gl.VALIDATE_STATUS ) + '\n\n' + 'Material Name: ' + self.name + '\n' + 'Material Type: ' + self.type + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors ); } } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { self.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); cachedUniforms = new WebGLUniforms( gl, program ); cachedAttributes = fetchAttributeLocations( gl, program ); } // set up caching for uniform locations let cachedUniforms; this.getUniforms = function () { if ( cachedUniforms === undefined ) { // Populates cachedUniforms and cachedAttributes onFirstUse( this ); } return cachedUniforms; }; // set up caching for attribute locations let cachedAttributes; this.getAttributes = function () { if ( cachedAttributes === undefined ) { // Populates cachedAttributes and cachedUniforms onFirstUse( this ); } return cachedAttributes; }; // indicate when the program is ready to be used. if the KHR_parallel_shader_compile extension isn't supported, // flag the program as ready immediately. It may cause a stall when it's first used. let programReady = ( parameters.rendererExtensionParallelShaderCompile === false ); this.isReady = function () { if ( programReady === false ) { programReady = gl.getProgramParameter( program, COMPLETION_STATUS_KHR ); } return programReady; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram( this ); gl.deleteProgram( program ); this.program = undefined; }; // this.type = parameters.shaderType; this.name = parameters.shaderName; this.id = programIdCount ++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } let _id$1 = 0; class WebGLShaderCache { constructor() { this.shaderCache = new Map(); this.materialCache = new Map(); } update( material ) { const vertexShader = material.vertexShader; const fragmentShader = material.fragmentShader; const vertexShaderStage = this._getShaderStage( vertexShader ); const fragmentShaderStage = this._getShaderStage( fragmentShader ); const materialShaders = this._getShaderCacheForMaterial( material ); if ( materialShaders.has( vertexShaderStage ) === false ) { materialShaders.add( vertexShaderStage ); vertexShaderStage.usedTimes ++; } if ( materialShaders.has( fragmentShaderStage ) === false ) { materialShaders.add( fragmentShaderStage ); fragmentShaderStage.usedTimes ++; } return this; } remove( material ) { const materialShaders = this.materialCache.get( material ); for ( const shaderStage of materialShaders ) { shaderStage.usedTimes --; if ( shaderStage.usedTimes === 0 ) this.shaderCache.delete( shaderStage.code ); } this.materialCache.delete( material ); return this; } getVertexShaderID( material ) { return this._getShaderStage( material.vertexShader ).id; } getFragmentShaderID( material ) { return this._getShaderStage( material.fragmentShader ).id; } dispose() { this.shaderCache.clear(); this.materialCache.clear(); } _getShaderCacheForMaterial( material ) { const cache = this.materialCache; let set = cache.get( material ); if ( set === undefined ) { set = new Set(); cache.set( material, set ); } return set; } _getShaderStage( code ) { const cache = this.shaderCache; let stage = cache.get( code ); if ( stage === undefined ) { stage = new WebGLShaderStage( code ); cache.set( code, stage ); } return stage; } } class WebGLShaderStage { constructor( code ) { this.id = _id$1 ++; this.code = code; this.usedTimes = 0; } } function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ) { const _programLayers = new Layers(); const _customShaders = new WebGLShaderCache(); const _activeChannels = new Set(); const programs = []; const IS_WEBGL2 = capabilities.isWebGL2; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const SUPPORTS_VERTEX_TEXTURES = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; function getChannel( value ) { _activeChannels.add( value ); if ( value === 0 ) return 'uv'; return `uv${ value }`; } function getParameters( material, lights, shadows, scene, object ) { const fog = scene.fog; const geometry = object.geometry; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const envMapCubeUVHeight = ( !! envMap ) && ( envMap.mapping === CubeUVReflectionMapping ) ? envMap.image.height : null; const shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } // const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let morphTextureStride = 0; if ( geometry.morphAttributes.position !== undefined ) morphTextureStride = 1; if ( geometry.morphAttributes.normal !== undefined ) morphTextureStride = 2; if ( geometry.morphAttributes.color !== undefined ) morphTextureStride = 3; // let vertexShader, fragmentShader; let customVertexShaderID, customFragmentShaderID; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; _customShaders.update( material ); customVertexShaderID = _customShaders.getVertexShaderID( material ); customFragmentShaderID = _customShaders.getFragmentShaderID( material ); } const currentRenderTarget = renderer.getRenderTarget(); const IS_INSTANCEDMESH = object.isInstancedMesh === true; const IS_BATCHEDMESH = object.isBatchedMesh === true; const HAS_MAP = !! material.map; const HAS_MATCAP = !! material.matcap; const HAS_ENVMAP = !! envMap; const HAS_AOMAP = !! material.aoMap; const HAS_LIGHTMAP = !! material.lightMap; const HAS_BUMPMAP = !! material.bumpMap; const HAS_NORMALMAP = !! material.normalMap; const HAS_DISPLACEMENTMAP = !! material.displacementMap; const HAS_EMISSIVEMAP = !! material.emissiveMap; const HAS_METALNESSMAP = !! material.metalnessMap; const HAS_ROUGHNESSMAP = !! material.roughnessMap; const HAS_ANISOTROPY = material.anisotropy > 0; const HAS_CLEARCOAT = material.clearcoat > 0; const HAS_IRIDESCENCE = material.iridescence > 0; const HAS_SHEEN = material.sheen > 0; const HAS_TRANSMISSION = material.transmission > 0; const HAS_ANISOTROPYMAP = HAS_ANISOTROPY && !! material.anisotropyMap; const HAS_CLEARCOATMAP = HAS_CLEARCOAT && !! material.clearcoatMap; const HAS_CLEARCOAT_NORMALMAP = HAS_CLEARCOAT && !! material.clearcoatNormalMap; const HAS_CLEARCOAT_ROUGHNESSMAP = HAS_CLEARCOAT && !! material.clearcoatRoughnessMap; const HAS_IRIDESCENCEMAP = HAS_IRIDESCENCE && !! material.iridescenceMap; const HAS_IRIDESCENCE_THICKNESSMAP = HAS_IRIDESCENCE && !! material.iridescenceThicknessMap; const HAS_SHEEN_COLORMAP = HAS_SHEEN && !! material.sheenColorMap; const HAS_SHEEN_ROUGHNESSMAP = HAS_SHEEN && !! material.sheenRoughnessMap; const HAS_SPECULARMAP = !! material.specularMap; const HAS_SPECULAR_COLORMAP = !! material.specularColorMap; const HAS_SPECULAR_INTENSITYMAP = !! material.specularIntensityMap; const HAS_TRANSMISSIONMAP = HAS_TRANSMISSION && !! material.transmissionMap; const HAS_THICKNESSMAP = HAS_TRANSMISSION && !! material.thicknessMap; const HAS_GRADIENTMAP = !! material.gradientMap; const HAS_ALPHAMAP = !! material.alphaMap; const HAS_ALPHATEST = material.alphaTest > 0; const HAS_ALPHAHASH = !! material.alphaHash; const HAS_EXTENSIONS = !! material.extensions; let toneMapping = NoToneMapping; if ( material.toneMapped ) { if ( currentRenderTarget === null || currentRenderTarget.isXRRenderTarget === true ) { toneMapping = renderer.toneMapping; } } const parameters = { isWebGL2: IS_WEBGL2, shaderID: shaderID, shaderType: material.type, shaderName: material.name, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, customVertexShaderID: customVertexShaderID, customFragmentShaderID: customFragmentShaderID, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, batching: IS_BATCHEDMESH, instancing: IS_INSTANCEDMESH, instancingColor: IS_INSTANCEDMESH && object.instanceColor !== null, instancingMorph: IS_INSTANCEDMESH && object.morphTexture !== null, supportsVertexTextures: SUPPORTS_VERTEX_TEXTURES, outputColorSpace: ( currentRenderTarget === null ) ? renderer.outputColorSpace : ( currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ), alphaToCoverage: !! material.alphaToCoverage, map: HAS_MAP, matcap: HAS_MATCAP, envMap: HAS_ENVMAP, envMapMode: HAS_ENVMAP && envMap.mapping, envMapCubeUVHeight: envMapCubeUVHeight, aoMap: HAS_AOMAP, lightMap: HAS_LIGHTMAP, bumpMap: HAS_BUMPMAP, normalMap: HAS_NORMALMAP, displacementMap: SUPPORTS_VERTEX_TEXTURES && HAS_DISPLACEMENTMAP, emissiveMap: HAS_EMISSIVEMAP, normalMapObjectSpace: HAS_NORMALMAP && material.normalMapType === ObjectSpaceNormalMap, normalMapTangentSpace: HAS_NORMALMAP && material.normalMapType === TangentSpaceNormalMap, metalnessMap: HAS_METALNESSMAP, roughnessMap: HAS_ROUGHNESSMAP, anisotropy: HAS_ANISOTROPY, anisotropyMap: HAS_ANISOTROPYMAP, clearcoat: HAS_CLEARCOAT, clearcoatMap: HAS_CLEARCOATMAP, clearcoatNormalMap: HAS_CLEARCOAT_NORMALMAP, clearcoatRoughnessMap: HAS_CLEARCOAT_ROUGHNESSMAP, iridescence: HAS_IRIDESCENCE, iridescenceMap: HAS_IRIDESCENCEMAP, iridescenceThicknessMap: HAS_IRIDESCENCE_THICKNESSMAP, sheen: HAS_SHEEN, sheenColorMap: HAS_SHEEN_COLORMAP, sheenRoughnessMap: HAS_SHEEN_ROUGHNESSMAP, specularMap: HAS_SPECULARMAP, specularColorMap: HAS_SPECULAR_COLORMAP, specularIntensityMap: HAS_SPECULAR_INTENSITYMAP, transmission: HAS_TRANSMISSION, transmissionMap: HAS_TRANSMISSIONMAP, thicknessMap: HAS_THICKNESSMAP, gradientMap: HAS_GRADIENTMAP, opaque: material.transparent === false && material.blending === NormalBlending && material.alphaToCoverage === false, alphaMap: HAS_ALPHAMAP, alphaTest: HAS_ALPHATEST, alphaHash: HAS_ALPHAHASH, combine: material.combine, // mapUv: HAS_MAP && getChannel( material.map.channel ), aoMapUv: HAS_AOMAP && getChannel( material.aoMap.channel ), lightMapUv: HAS_LIGHTMAP && getChannel( material.lightMap.channel ), bumpMapUv: HAS_BUMPMAP && getChannel( material.bumpMap.channel ), normalMapUv: HAS_NORMALMAP && getChannel( material.normalMap.channel ), displacementMapUv: HAS_DISPLACEMENTMAP && getChannel( material.displacementMap.channel ), emissiveMapUv: HAS_EMISSIVEMAP && getChannel( material.emissiveMap.channel ), metalnessMapUv: HAS_METALNESSMAP && getChannel( material.metalnessMap.channel ), roughnessMapUv: HAS_ROUGHNESSMAP && getChannel( material.roughnessMap.channel ), anisotropyMapUv: HAS_ANISOTROPYMAP && getChannel( material.anisotropyMap.channel ), clearcoatMapUv: HAS_CLEARCOATMAP && getChannel( material.clearcoatMap.channel ), clearcoatNormalMapUv: HAS_CLEARCOAT_NORMALMAP && getChannel( material.clearcoatNormalMap.channel ), clearcoatRoughnessMapUv: HAS_CLEARCOAT_ROUGHNESSMAP && getChannel( material.clearcoatRoughnessMap.channel ), iridescenceMapUv: HAS_IRIDESCENCEMAP && getChannel( material.iridescenceMap.channel ), iridescenceThicknessMapUv: HAS_IRIDESCENCE_THICKNESSMAP && getChannel( material.iridescenceThicknessMap.channel ), sheenColorMapUv: HAS_SHEEN_COLORMAP && getChannel( material.sheenColorMap.channel ), sheenRoughnessMapUv: HAS_SHEEN_ROUGHNESSMAP && getChannel( material.sheenRoughnessMap.channel ), specularMapUv: HAS_SPECULARMAP && getChannel( material.specularMap.channel ), specularColorMapUv: HAS_SPECULAR_COLORMAP && getChannel( material.specularColorMap.channel ), specularIntensityMapUv: HAS_SPECULAR_INTENSITYMAP && getChannel( material.specularIntensityMap.channel ), transmissionMapUv: HAS_TRANSMISSIONMAP && getChannel( material.transmissionMap.channel ), thicknessMapUv: HAS_THICKNESSMAP && getChannel( material.thicknessMap.channel ), alphaMapUv: HAS_ALPHAMAP && getChannel( material.alphaMap.channel ), // vertexTangents: !! geometry.attributes.tangent && ( HAS_NORMALMAP || HAS_ANISOTROPY ), vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4, pointsUvs: object.isPoints === true && !! geometry.attributes.uv && ( HAS_MAP || HAS_ALPHAMAP ), fog: !! fog, useFog: material.fog === true, fogExp2: ( !! fog && fog.isFogExp2 ), flatShading: material.flatShading === true, sizeAttenuation: material.sizeAttenuation === true, logarithmicDepthBuffer: logarithmicDepthBuffer, skinning: object.isSkinnedMesh === true, morphTargets: geometry.morphAttributes.position !== undefined, morphNormals: geometry.morphAttributes.normal !== undefined, morphColors: geometry.morphAttributes.color !== undefined, morphTargetsCount: morphTargetsCount, morphTextureStride: morphTextureStride, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numSpotLightMaps: lights.spotLightMap.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numSpotLightShadowsWithMaps: lights.numSpotLightShadowsWithMaps, numLightProbes: lights.numLightProbes, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: toneMapping, useLegacyLights: renderer._useLegacyLights, decodeVideoTexture: HAS_MAP && ( material.map.isVideoTexture === true ) && ( ColorManagement.getTransfer( material.map.colorSpace ) === SRGBTransfer ), premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, useDepthPacking: material.depthPacking >= 0, depthPacking: material.depthPacking || 0, index0AttributeName: material.index0AttributeName, extensionDerivatives: HAS_EXTENSIONS && material.extensions.derivatives === true, extensionFragDepth: HAS_EXTENSIONS && material.extensions.fragDepth === true, extensionDrawBuffers: HAS_EXTENSIONS && material.extensions.drawBuffers === true, extensionShaderTextureLOD: HAS_EXTENSIONS && material.extensions.shaderTextureLOD === true, extensionClipCullDistance: HAS_EXTENSIONS && material.extensions.clipCullDistance === true && extensions.has( 'WEBGL_clip_cull_distance' ), extensionMultiDraw: HAS_EXTENSIONS && material.extensions.multiDraw === true && extensions.has( 'WEBGL_multi_draw' ), rendererExtensionFragDepth: IS_WEBGL2 || extensions.has( 'EXT_frag_depth' ), rendererExtensionDrawBuffers: IS_WEBGL2 || extensions.has( 'WEBGL_draw_buffers' ), rendererExtensionShaderTextureLod: IS_WEBGL2 || extensions.has( 'EXT_shader_texture_lod' ), rendererExtensionParallelShaderCompile: extensions.has( 'KHR_parallel_shader_compile' ), customProgramCacheKey: material.customProgramCacheKey() }; // the usage of getChannel() determines the active texture channels for this shader parameters.vertexUv1s = _activeChannels.has( 1 ); parameters.vertexUv2s = _activeChannels.has( 2 ); parameters.vertexUv3s = _activeChannels.has( 3 ); _activeChannels.clear(); return parameters; } function getProgramCacheKey( parameters ) { const array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( parameters.customVertexShaderID ); array.push( parameters.customFragmentShaderID ); } if ( parameters.defines !== undefined ) { for ( const name in parameters.defines ) { array.push( name ); array.push( parameters.defines[ name ] ); } } if ( parameters.isRawShaderMaterial === false ) { getProgramCacheKeyParameters( array, parameters ); getProgramCacheKeyBooleans( array, parameters ); array.push( renderer.outputColorSpace ); } array.push( parameters.customProgramCacheKey ); return array.join(); } function getProgramCacheKeyParameters( array, parameters ) { array.push( parameters.precision ); array.push( parameters.outputColorSpace ); array.push( parameters.envMapMode ); array.push( parameters.envMapCubeUVHeight ); array.push( parameters.mapUv ); array.push( parameters.alphaMapUv ); array.push( parameters.lightMapUv ); array.push( parameters.aoMapUv ); array.push( parameters.bumpMapUv ); array.push( parameters.normalMapUv ); array.push( parameters.displacementMapUv ); array.push( parameters.emissiveMapUv ); array.push( parameters.metalnessMapUv ); array.push( parameters.roughnessMapUv ); array.push( parameters.anisotropyMapUv ); array.push( parameters.clearcoatMapUv ); array.push( parameters.clearcoatNormalMapUv ); array.push( parameters.clearcoatRoughnessMapUv ); array.push( parameters.iridescenceMapUv ); array.push( parameters.iridescenceThicknessMapUv ); array.push( parameters.sheenColorMapUv ); array.push( parameters.sheenRoughnessMapUv ); array.push( parameters.specularMapUv ); array.push( parameters.specularColorMapUv ); array.push( parameters.specularIntensityMapUv ); array.push( parameters.transmissionMapUv ); array.push( parameters.thicknessMapUv ); array.push( parameters.combine ); array.push( parameters.fogExp2 ); array.push( parameters.sizeAttenuation ); array.push( parameters.morphTargetsCount ); array.push( parameters.morphAttributeCount ); array.push( parameters.numDirLights ); array.push( parameters.numPointLights ); array.push( parameters.numSpotLights ); array.push( parameters.numSpotLightMaps ); array.push( parameters.numHemiLights ); array.push( parameters.numRectAreaLights ); array.push( parameters.numDirLightShadows ); array.push( parameters.numPointLightShadows ); array.push( parameters.numSpotLightShadows ); array.push( parameters.numSpotLightShadowsWithMaps ); array.push( parameters.numLightProbes ); array.push( parameters.shadowMapType ); array.push( parameters.toneMapping ); array.push( parameters.numClippingPlanes ); array.push( parameters.numClipIntersection ); array.push( parameters.depthPacking ); } function getProgramCacheKeyBooleans( array, parameters ) { _programLayers.disableAll(); if ( parameters.isWebGL2 ) _programLayers.enable( 0 ); if ( parameters.supportsVertexTextures ) _programLayers.enable( 1 ); if ( parameters.instancing ) _programLayers.enable( 2 ); if ( parameters.instancingColor ) _programLayers.enable( 3 ); if ( parameters.instancingMorph ) _programLayers.enable( 4 ); if ( parameters.matcap ) _programLayers.enable( 5 ); if ( parameters.envMap ) _programLayers.enable( 6 ); if ( parameters.normalMapObjectSpace ) _programLayers.enable( 7 ); if ( parameters.normalMapTangentSpace ) _programLayers.enable( 8 ); if ( parameters.clearcoat ) _programLayers.enable( 9 ); if ( parameters.iridescence ) _programLayers.enable( 10 ); if ( parameters.alphaTest ) _programLayers.enable( 11 ); if ( parameters.vertexColors ) _programLayers.enable( 12 ); if ( parameters.vertexAlphas ) _programLayers.enable( 13 ); if ( parameters.vertexUv1s ) _programLayers.enable( 14 ); if ( parameters.vertexUv2s ) _programLayers.enable( 15 ); if ( parameters.vertexUv3s ) _programLayers.enable( 16 ); if ( parameters.vertexTangents ) _programLayers.enable( 17 ); if ( parameters.anisotropy ) _programLayers.enable( 18 ); if ( parameters.alphaHash ) _programLayers.enable( 19 ); if ( parameters.batching ) _programLayers.enable( 20 ); array.push( _programLayers.mask ); _programLayers.disableAll(); if ( parameters.fog ) _programLayers.enable( 0 ); if ( parameters.useFog ) _programLayers.enable( 1 ); if ( parameters.flatShading ) _programLayers.enable( 2 ); if ( parameters.logarithmicDepthBuffer ) _programLayers.enable( 3 ); if ( parameters.skinning ) _programLayers.enable( 4 ); if ( parameters.morphTargets ) _programLayers.enable( 5 ); if ( parameters.morphNormals ) _programLayers.enable( 6 ); if ( parameters.morphColors ) _programLayers.enable( 7 ); if ( parameters.premultipliedAlpha ) _programLayers.enable( 8 ); if ( parameters.shadowMapEnabled ) _programLayers.enable( 9 ); if ( parameters.useLegacyLights ) _programLayers.enable( 10 ); if ( parameters.doubleSided ) _programLayers.enable( 11 ); if ( parameters.flipSided ) _programLayers.enable( 12 ); if ( parameters.useDepthPacking ) _programLayers.enable( 13 ); if ( parameters.dithering ) _programLayers.enable( 14 ); if ( parameters.transmission ) _programLayers.enable( 15 ); if ( parameters.sheen ) _programLayers.enable( 16 ); if ( parameters.opaque ) _programLayers.enable( 17 ); if ( parameters.pointsUvs ) _programLayers.enable( 18 ); if ( parameters.decodeVideoTexture ) _programLayers.enable( 19 ); if ( parameters.alphaToCoverage ) _programLayers.enable( 20 ); array.push( _programLayers.mask ); } function getUniforms( material ) { const shaderID = shaderIDs[ material.type ]; let uniforms; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; uniforms = UniformsUtils.clone( shader.uniforms ); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram( parameters, cacheKey ) { let program; // Check if code has been already compiled for ( let p = 0, pl = programs.length; p < pl; p ++ ) { const preexistingProgram = programs[ p ]; if ( preexistingProgram.cacheKey === cacheKey ) { program = preexistingProgram; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); programs.push( program ); } return program; } function releaseProgram( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set const i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } } function releaseShaderCache( material ) { _customShaders.remove( material ); } function dispose() { _customShaders.dispose(); } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, releaseShaderCache: releaseShaderCache, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs, dispose: dispose }; } function WebGLProperties() { let properties = new WeakMap(); function get( object ) { let map = properties.get( object ); if ( map === undefined ) { map = {}; properties.set( object, map ); } return map; } function remove( object ) { properties.delete( object ); } function update( object, key, value ) { properties.get( object )[ key ] = value; } function dispose() { properties = new WeakMap(); } return { get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList() { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { let renderItem = renderItems[ renderItemsIndex ]; if ( renderItem === undefined ) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[ renderItemsIndex ] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex ++; return renderItem; } function push( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.push( renderItem ); } else if ( material.transparent === true ) { transparent.push( renderItem ); } else { opaque.push( renderItem ); } } function unshift( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.unshift( renderItem ); } else if ( material.transparent === true ) { transparent.unshift( renderItem ); } else { opaque.unshift( renderItem ); } } function sort( customOpaqueSort, customTransparentSort ) { if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable ); if ( transmissive.length > 1 ) transmissive.sort( customTransparentSort || reversePainterSortStable ); if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable ); } function finish() { // Clear references from inactive renderItems in the list for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { const renderItem = renderItems[ i ]; if ( renderItem.id === null ) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.group = null; } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists() { let lists = new WeakMap(); function get( scene, renderCallDepth ) { const listArray = lists.get( scene ); let list; if ( listArray === undefined ) { list = new WebGLRenderList(); lists.set( scene, [ list ] ); } else { if ( renderCallDepth >= listArray.length ) { list = new WebGLRenderList(); listArray.push( list ); } else { list = listArray[ renderCallDepth ]; } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[ light.id ] = uniforms; return uniforms; } }; } let nextVersion = 0; function shadowCastingAndTexturingLightsFirst( lightA, lightB ) { return ( lightB.castShadow ? 2 : 0 ) - ( lightA.castShadow ? 2 : 0 ) + ( lightB.map ? 1 : 0 ) - ( lightA.map ? 1 : 0 ); } function WebGLLights( extensions, capabilities ) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: - 1, pointLength: - 1, spotLength: - 1, rectAreaLength: - 1, hemiLength: - 1, numDirectionalShadows: - 1, numPointShadows: - 1, numSpotShadows: - 1, numSpotMaps: - 1, numLightProbes: - 1 }, ambient: [ 0, 0, 0 ], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotLightMap: [], spotShadow: [], spotShadowMap: [], spotLightMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], numSpotLightShadowsWithMaps: 0, numLightProbes: 0 }; for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() ); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup( lights, useLegacyLights ) { let r = 0, g = 0, b = 0; for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 ); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; let numSpotMaps = 0; let numSpotShadowsWithMaps = 0; let numLightProbes = 0; // ordering : [shadow casting + map texturing, map texturing, shadow casting, none ] lights.sort( shadowCastingAndTexturingLightsFirst ); // artist-friendly light intensity scaling factor const scaleFactor = ( useLegacyLights === true ) ? Math.PI : 1; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity * scaleFactor; g += color.g * intensity * scaleFactor; b += color.b * intensity * scaleFactor; } else if ( light.isLightProbe ) { for ( let j = 0; j < 9; j ++ ) { state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); } numLightProbes ++; } else if ( light.isDirectionalLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[ directionalLength ] = shadowUniforms; state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; numDirectionalShadows ++; } state.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = cache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.color.copy( color ).multiplyScalar( intensity * scaleFactor ); uniforms.distance = distance; uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = light.decay; state.spot[ spotLength ] = uniforms; const shadow = light.shadow; if ( light.map ) { state.spotLightMap[ numSpotMaps ] = light.map; numSpotMaps ++; // make sure the lightMatrix is up to date // TODO : do it if required only shadow.updateMatrices( light ); if ( light.castShadow ) numSpotShadowsWithMaps ++; } state.spotLightMatrix[ spotLength ] = shadow.matrix; if ( light.castShadow ) { const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[ spotLength ] = shadowUniforms; state.spotShadowMap[ spotLength ] = shadowMap; numSpotShadows ++; } spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = cache.get( light ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); state.rectArea[ rectAreaLength ] = uniforms; rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor ); uniforms.distance = light.distance; uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[ pointLength ] = shadowUniforms; state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; numPointShadows ++; } state.point[ pointLength ] = uniforms; pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = cache.get( light ); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity * scaleFactor ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity * scaleFactor ); state.hemi[ hemiLength ] = uniforms; hemiLength ++; } } if ( rectAreaLength > 0 ) { if ( capabilities.isWebGL2 ) { // WebGL 2 if ( extensions.has( 'OES_texture_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } } else { // WebGL 1 if ( extensions.has( 'OES_texture_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else if ( extensions.has( 'OES_texture_half_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } else { console.error( 'THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.' ); } } } state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b; const hash = state.hash; if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows || hash.numSpotMaps !== numSpotMaps || hash.numLightProbes !== numLightProbes ) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotLightMatrix.length = numSpotShadows + numSpotMaps - numSpotShadowsWithMaps; state.spotLightMap.length = numSpotMaps; state.numSpotLightShadowsWithMaps = numSpotShadowsWithMaps; state.numLightProbes = numLightProbes; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; hash.numSpotMaps = numSpotMaps; hash.numLightProbes = numLightProbes; state.version = nextVersion ++; } } function setupView( lights, camera ) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; if ( light.isDirectionalLight ) { const uniforms = state.directional[ directionalLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = state.spot[ spotLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = state.rectArea[ rectAreaLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms.halfWidth.applyMatrix4( matrix42 ); uniforms.halfHeight.applyMatrix4( matrix42 ); rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = state.point[ pointLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = state.hemi[ hemiLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); hemiLength ++; } } } return { setup: setup, setupView: setupView, state: state }; } function WebGLRenderState( extensions, capabilities ) { const lights = new WebGLLights( extensions, capabilities ); const lightsArray = []; const shadowsArray = []; function init() { lightsArray.length = 0; shadowsArray.length = 0; } function pushLight( light ) { lightsArray.push( light ); } function pushShadow( shadowLight ) { shadowsArray.push( shadowLight ); } function setupLights( useLegacyLights ) { lights.setup( lightsArray, useLegacyLights ); } function setupLightsView( camera ) { lights.setupView( lightsArray, camera ); } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, lights: lights }; return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates( extensions, capabilities ) { let renderStates = new WeakMap(); function get( scene, renderCallDepth = 0 ) { const renderStateArray = renderStates.get( scene ); let renderState; if ( renderStateArray === undefined ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStates.set( scene, [ renderState ] ); } else { if ( renderCallDepth >= renderStateArray.length ) { renderState = new WebGLRenderState( extensions, capabilities ); renderStateArray.push( renderState ); } else { renderState = renderStateArray[ renderCallDepth ]; } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } class MeshDepthMaterial extends Material { constructor( parameters ) { super(); this.isMeshDepthMaterial = true; this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.depthPacking = source.depthPacking; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } class MeshDistanceMaterial extends Material { constructor( parameters ) { super(); this.isMeshDistanceMaterial = true; this.type = 'MeshDistanceMaterial'; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; function WebGLShadowMap( _renderer, _objects, _capabilities ) { let _frustum = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = _capabilities.maxTextureSize; const shadowSide = { [ FrontSide ]: BackSide, [ BackSide ]: FrontSide, [ DoubleSide ]: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial( { defines: { VSM_SAMPLES: 8 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vertex, fragmentShader: fragment } ); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( 'position', new BufferAttribute( new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), 3 ) ); const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; let _previousType = this.type; this.render = function ( lights, scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( lights.length === 0 ) return; const currentRenderTarget = _renderer.getRenderTarget(); const activeCubeFace = _renderer.getActiveCubeFace(); const activeMipmapLevel = _renderer.getActiveMipmapLevel(); const _state = _renderer.state; // Set GL state for depth map. _state.setBlending( NoBlending ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // check for shadow map type changes const toVSM = ( _previousType !== VSMShadowMap && this.type === VSMShadowMap ); const fromVSM = ( _previousType === VSMShadowMap && this.type !== VSMShadowMap ); // render depth map for ( let i = 0, il = lights.length; i < il; i ++ ) { const light = lights[ i ]; const shadow = light.shadow; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue; _shadowMapSize.copy( shadow.mapSize ); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply( shadowFrameExtents ); _viewportSize.copy( shadow.mapSize ); if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) { if ( _shadowMapSize.x > _maxTextureSize ) { _viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x ); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if ( _shadowMapSize.y > _maxTextureSize ) { _viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y ); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if ( shadow.map === null || toVSM === true || fromVSM === true ) { const pars = ( this.type !== VSMShadowMap ) ? { minFilter: NearestFilter, magFilter: NearestFilter } : {}; if ( shadow.map !== null ) { shadow.map.dispose(); } shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + '.shadowMap'; shadow.camera.updateProjectionMatrix(); } _renderer.setRenderTarget( shadow.map ); _renderer.clear(); const viewportCount = shadow.getViewportCount(); for ( let vp = 0; vp < viewportCount; vp ++ ) { const viewport = shadow.getViewport( vp ); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport( _viewport ); shadow.updateMatrices( light, vp ); _frustum = shadow.getFrustum(); renderObject( scene, camera, shadow.camera, light, this.type ); } // do blur pass for VSM if ( shadow.isPointLightShadow !== true && this.type === VSMShadowMap ) { VSMPass( shadow, camera ); } shadow.needsUpdate = false; } _previousType = this.type; scope.needsUpdate = false; _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); }; function VSMPass( shadow, camera ) { const geometry = _objects.update( fullScreenMesh ); if ( shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples ) { shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialVertical.needsUpdate = true; shadowMaterialHorizontal.needsUpdate = true; } if ( shadow.mapPass === null ) { shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y ); } // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.mapPass ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; _renderer.setRenderTarget( shadow.map ); _renderer.clear(); _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null ); } function getDepthMaterial( object, material, light, type ) { let result = null; const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial; if ( customMaterial !== undefined ) { result = customMaterial; } else { result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial; if ( ( _renderer.localClippingEnabled && material.clipShadows === true && Array.isArray( material.clippingPlanes ) && material.clippingPlanes.length !== 0 ) || ( material.displacementMap && material.displacementScale !== 0 ) || ( material.alphaMap && material.alphaTest > 0 ) || ( material.map && material.alphaTest > 0 ) ) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } let cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; material.addEventListener( 'dispose', onMaterialDispose ); } result = cachedMaterial; } } result.visible = material.visible; result.wireframe = material.wireframe; if ( type === VSMShadowMap ) { result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; } else { result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; } result.alphaMap = material.alphaMap; result.alphaTest = material.alphaTest; result.map = material.map; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.displacementMap = material.displacementMap; result.displacementScale = material.displacementScale; result.displacementBias = material.displacementBias; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { const materialProperties = _renderer.properties.get( result ); materialProperties.light = light; } return result; } function renderObject( object, camera, shadowCamera, light, type ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); const geometry = _objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let k = 0, kl = groups.length; k < kl; k ++ ) { const group = groups[ k ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { const depthMaterial = getDepthMaterial( object, groupMaterial, light, type ); object.onBeforeShadow( _renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); object.onAfterShadow( _renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); } } } else if ( material.visible ) { const depthMaterial = getDepthMaterial( object, material, light, type ); object.onBeforeShadow( _renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); object.onAfterShadow( _renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, light, type ); } } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); // make sure to remove the unique distance/depth materials used for shadow map rendering for ( const id in _materialCache ) { const cache = _materialCache[ id ]; const uuid = event.target.uuid; if ( uuid in cache ) { const shadowMaterial = cache[ uuid ]; shadowMaterial.dispose(); delete cache[ uuid ]; } } } } function WebGLState( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4( 0, 0, 0, 0 ); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state } }; } function DepthBuffer() { let locked = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setTest: function ( depthTest ) { if ( depthTest ) { enable( gl.DEPTH_TEST ); } else { disable( gl.DEPTH_TEST ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( currentDepthFunc !== depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( gl.NEVER ); break; case AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case LessDepth: gl.depthFunc( gl.LESS ); break; case LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case EqualDepth: gl.depthFunc( gl.EQUAL ); break; case GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case GreaterDepth: gl.depthFunc( gl.GREATER ); break; case NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( ! locked ) { if ( stencilTest ) { enable( gl.STENCIL_TEST ); } else { disable( gl.STENCIL_TEST ); } } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); const uboBindings = new WeakMap(); const uboProgramMap = new WeakMap(); let enabledCapabilities = {}; let currentBoundFramebuffers = {}; let currentDrawbuffers = new WeakMap(); let defaultDrawbuffers = []; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentBlendColor = new Color( 0, 0, 0 ); let currentBlendAlpha = 0; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS ); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter( gl.VERSION ); if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { version = parseFloat( /^WebGL (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 ); } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { version = parseFloat( /^OpenGL ES (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 ); } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter( gl.SCISSOR_BOX ); const viewportParam = gl.getParameter( gl.VIEWPORT ); const currentScissor = new Vector4().fromArray( scissorParam ); const currentViewport = new Vector4().fromArray( viewportParam ); function createTexture( type, target, count, dimensions ) { const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); for ( let i = 0; i < count; i ++ ) { if ( isWebGL2 && ( type === gl.TEXTURE_3D || type === gl.TEXTURE_2D_ARRAY ) ) { gl.texImage3D( target, 0, gl.RGBA, 1, 1, dimensions, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } else { gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } } return texture; } const emptyTextures = {}; emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ); if ( isWebGL2 ) { emptyTextures[ gl.TEXTURE_2D_ARRAY ] = createTexture( gl.TEXTURE_2D_ARRAY, gl.TEXTURE_2D_ARRAY, 1, 1 ); emptyTextures[ gl.TEXTURE_3D ] = createTexture( gl.TEXTURE_3D, gl.TEXTURE_3D, 1, 1 ); } // init colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( gl.DEPTH_TEST ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( gl.CULL_FACE ); setBlending( NoBlending ); // function enable( id ) { if ( enabledCapabilities[ id ] !== true ) { gl.enable( id ); enabledCapabilities[ id ] = true; } } function disable( id ) { if ( enabledCapabilities[ id ] !== false ) { gl.disable( id ); enabledCapabilities[ id ] = false; } } function bindFramebuffer( target, framebuffer ) { if ( currentBoundFramebuffers[ target ] !== framebuffer ) { gl.bindFramebuffer( target, framebuffer ); currentBoundFramebuffers[ target ] = framebuffer; if ( isWebGL2 ) { // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER if ( target === gl.DRAW_FRAMEBUFFER ) { currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer; } if ( target === gl.FRAMEBUFFER ) { currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer; } } return true; } return false; } function drawBuffers( renderTarget, framebuffer ) { let drawBuffers = defaultDrawbuffers; let needsUpdate = false; if ( renderTarget ) { drawBuffers = currentDrawbuffers.get( framebuffer ); if ( drawBuffers === undefined ) { drawBuffers = []; currentDrawbuffers.set( framebuffer, drawBuffers ); } const textures = renderTarget.textures; if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i; } drawBuffers.length = textures.length; needsUpdate = true; } } else { if ( drawBuffers[ 0 ] !== gl.BACK ) { drawBuffers[ 0 ] = gl.BACK; needsUpdate = true; } } if ( needsUpdate ) { if ( capabilities.isWebGL2 ) { gl.drawBuffers( drawBuffers ); } else if ( extensions.has( 'WEBGL_draw_buffers' ) === true ) { extensions.get( 'WEBGL_draw_buffers' ).drawBuffersWEBGL( drawBuffers ); } else { throw new Error( 'THREE.WebGLState: Usage of gl.drawBuffers() require WebGL2 or WEBGL_draw_buffers extension' ); } } } function useProgram( program ) { if ( currentProgram !== program ) { gl.useProgram( program ); currentProgram = program; return true; } return false; } const equationToGL = { [ AddEquation ]: gl.FUNC_ADD, [ SubtractEquation ]: gl.FUNC_SUBTRACT, [ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT }; if ( isWebGL2 ) { equationToGL[ MinEquation ] = gl.MIN; equationToGL[ MaxEquation ] = gl.MAX; } else { const extension = extensions.get( 'EXT_blend_minmax' ); if ( extension !== null ) { equationToGL[ MinEquation ] = extension.MIN_EXT; equationToGL[ MaxEquation ] = extension.MAX_EXT; } } const factorToGL = { [ ZeroFactor ]: gl.ZERO, [ OneFactor ]: gl.ONE, [ SrcColorFactor ]: gl.SRC_COLOR, [ SrcAlphaFactor ]: gl.SRC_ALPHA, [ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE, [ DstColorFactor ]: gl.DST_COLOR, [ DstAlphaFactor ]: gl.DST_ALPHA, [ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR, [ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA, [ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR, [ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA, [ ConstantColorFactor ]: gl.CONSTANT_COLOR, [ OneMinusConstantColorFactor ]: gl.ONE_MINUS_CONSTANT_COLOR, [ ConstantAlphaFactor ]: gl.CONSTANT_ALPHA, [ OneMinusConstantAlphaFactor ]: gl.ONE_MINUS_CONSTANT_ALPHA }; function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, blendColor, blendAlpha, premultipliedAlpha ) { if ( blending === NoBlending ) { if ( currentBlendingEnabled === true ) { disable( gl.BLEND ); currentBlendingEnabled = false; } return; } if ( currentBlendingEnabled === false ) { enable( gl.BLEND ); currentBlendingEnabled = true; } if ( blending !== CustomBlending ) { if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { gl.blendEquation( gl.FUNC_ADD ); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if ( premultipliedAlpha ) { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break; case AdditiveBlending: gl.blendFunc( gl.ONE, gl.ONE ); break; case SubtractiveBlending: gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); break; case MultiplyBlending: gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } else { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break; case AdditiveBlending: gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); break; case SubtractiveBlending: gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); break; case MultiplyBlending: gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor.set( 0, 0, 0 ); currentBlendAlpha = 0; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } if ( blendColor.equals( currentBlendColor ) === false || blendAlpha !== currentBlendAlpha ) { gl.blendColor( blendColor.r, blendColor.g, blendColor.b, blendAlpha ); currentBlendColor.copy( blendColor ); currentBlendAlpha = blendAlpha; } currentBlending = blending; currentPremultipledAlpha = false; } function setMaterial( material, frontFaceCW ) { material.side === DoubleSide ? disable( gl.CULL_FACE ) : enable( gl.CULL_FACE ); let flipSided = ( material.side === BackSide ); if ( frontFaceCW ) flipSided = ! flipSided; setFlipSided( flipSided ); ( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.blendColor, material.blendAlpha, material.premultipliedAlpha ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); const stencilWrite = material.stencilWrite; stencilBuffer.setTest( stencilWrite ); if ( stencilWrite ) { stencilBuffer.setMask( material.stencilWriteMask ); stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); } setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); material.alphaToCoverage === true ? enable( gl.SAMPLE_ALPHA_TO_COVERAGE ) : disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( gl.CULL_FACE ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( gl.BACK ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( gl.FRONT ); } else { gl.cullFace( gl.FRONT_AND_BACK ); } } } else { disable( gl.CULL_FACE ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( gl.POLYGON_OFFSET_FILL ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( gl.POLYGON_OFFSET_FILL ); } } function setScissorTest( scissorTest ) { if ( scissorTest ) { enable( gl.SCISSOR_TEST ); } else { disable( gl.SCISSOR_TEST ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture, webglSlot ) { if ( webglSlot === undefined ) { if ( currentTextureSlot === null ) { webglSlot = gl.TEXTURE0 + maxTextures - 1; } else { webglSlot = currentTextureSlot; } } let boundTexture = currentBoundTextures[ webglSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ webglSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { const boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture !== undefined && boundTexture.type !== undefined ) { gl.bindTexture( boundTexture.type, null ); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexImage3D() { try { gl.compressedTexImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage2D() { try { gl.texSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage3D() { try { gl.texSubImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexSubImage2D() { try { gl.compressedTexSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexSubImage3D() { try { gl.compressedTexSubImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage2D() { try { gl.texStorage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage3D() { try { gl.texStorage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage3D() { try { gl.texImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } function updateUBOMapping( uniformsGroup, program ) { let mapping = uboProgramMap.get( program ); if ( mapping === undefined ) { mapping = new WeakMap(); uboProgramMap.set( program, mapping ); } let blockIndex = mapping.get( uniformsGroup ); if ( blockIndex === undefined ) { blockIndex = gl.getUniformBlockIndex( program, uniformsGroup.name ); mapping.set( uniformsGroup, blockIndex ); } } function uniformBlockBinding( uniformsGroup, program ) { const mapping = uboProgramMap.get( program ); const blockIndex = mapping.get( uniformsGroup ); if ( uboBindings.get( program ) !== blockIndex ) { // bind shader specific block index to global block point gl.uniformBlockBinding( program, blockIndex, uniformsGroup.__bindingPointIndex ); uboBindings.set( program, blockIndex ); } } // function reset() { // reset state gl.disable( gl.BLEND ); gl.disable( gl.CULL_FACE ); gl.disable( gl.DEPTH_TEST ); gl.disable( gl.POLYGON_OFFSET_FILL ); gl.disable( gl.SCISSOR_TEST ); gl.disable( gl.STENCIL_TEST ); gl.disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ONE, gl.ZERO ); gl.blendFuncSeparate( gl.ONE, gl.ZERO, gl.ONE, gl.ZERO ); gl.blendColor( 0, 0, 0, 0 ); gl.colorMask( true, true, true, true ); gl.clearColor( 0, 0, 0, 0 ); gl.depthMask( true ); gl.depthFunc( gl.LESS ); gl.clearDepth( 1 ); gl.stencilMask( 0xffffffff ); gl.stencilFunc( gl.ALWAYS, 0, 0xffffffff ); gl.stencilOp( gl.KEEP, gl.KEEP, gl.KEEP ); gl.clearStencil( 0 ); gl.cullFace( gl.BACK ); gl.frontFace( gl.CCW ); gl.polygonOffset( 0, 0 ); gl.activeTexture( gl.TEXTURE0 ); gl.bindFramebuffer( gl.FRAMEBUFFER, null ); if ( isWebGL2 === true ) { gl.bindFramebuffer( gl.DRAW_FRAMEBUFFER, null ); gl.bindFramebuffer( gl.READ_FRAMEBUFFER, null ); } gl.useProgram( null ); gl.lineWidth( 1 ); gl.scissor( 0, 0, gl.canvas.width, gl.canvas.height ); gl.viewport( 0, 0, gl.canvas.width, gl.canvas.height ); // reset internals enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; currentBoundFramebuffers = {}; currentDrawbuffers = new WeakMap(); defaultDrawbuffers = []; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor = new Color( 0, 0, 0 ); currentBlendAlpha = 0; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set( 0, 0, gl.canvas.width, gl.canvas.height ); currentViewport.set( 0, 0, gl.canvas.width, gl.canvas.height ); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, drawBuffers: drawBuffers, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, compressedTexImage3D: compressedTexImage3D, texImage2D: texImage2D, texImage3D: texImage3D, updateUBOMapping: updateUBOMapping, uniformBlockBinding: uniformBlockBinding, texStorage2D: texStorage2D, texStorage3D: texStorage3D, texSubImage2D: texSubImage2D, texSubImage3D: texSubImage3D, compressedTexSubImage2D: compressedTexSubImage2D, compressedTexSubImage3D: compressedTexSubImage3D, scissor: scissor, viewport: viewport, reset: reset }; } function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { const isWebGL2 = capabilities.isWebGL2; const multisampledRTTExt = extensions.has( 'WEBGL_multisampled_render_to_texture' ) ? extensions.get( 'WEBGL_multisampled_render_to_texture' ) : null; const supportsInvalidateFramebuffer = typeof navigator === 'undefined' ? false : /OculusBrowser/g.test( navigator.userAgent ); const _imageDimensions = new Vector2(); const _videoTextures = new WeakMap(); let _canvas; const _sources = new WeakMap(); // maps WebglTexture objects to instances of Source // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' // eslint-disable-next-line compat/compat && ( new OffscreenCanvas( 1, 1 ).getContext( '2d' ) ) !== null; } catch ( err ) { // Ignore any errors } function createCanvas( width, height ) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? // eslint-disable-next-line compat/compat new OffscreenCanvas( width, height ) : createElementNS( 'canvas' ); } function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) { let scale = 1; const dimensions = getDimensions( image ); // handle case if texture exceeds max size if ( dimensions.width > maxSize || dimensions.height > maxSize ) { scale = maxSize / Math.max( dimensions.width, dimensions.height ); } // only perform resize if necessary if ( scale < 1 || needsPowerOfTwo === true ) { // only perform resize for certain image types if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) || ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) ) { const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor; const width = floor( scale * dimensions.width ); const height = floor( scale * dimensions.height ); if ( _canvas === undefined ) _canvas = createCanvas( width, height ); // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; canvas.width = width; canvas.height = height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + dimensions.width + 'x' + dimensions.height + ') to (' + width + 'x' + height + ').' ); return canvas; } else { if ( 'data' in image ) { console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + dimensions.width + 'x' + dimensions.height + ').' ); } return image; } } return image; } function isPowerOfTwo$1( image ) { const dimensions = getDimensions( image ); return isPowerOfTwo( dimensions.width ) && isPowerOfTwo( dimensions.height ); } function textureNeedsPowerOfTwo( texture ) { if ( isWebGL2 ) return false; return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); } function textureNeedsGenerateMipmaps( texture, supportsMips ) { return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap( target ) { _gl.generateMipmap( target ); } function getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) { if ( isWebGL2 === false ) return glFormat; if ( internalFormatName !== null ) { if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ]; console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); } let internalFormat = glFormat; if ( glFormat === _gl.RED ) { if ( glType === _gl.FLOAT ) internalFormat = _gl.R32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.R16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8; } if ( glFormat === _gl.RED_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.R16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.R32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.R8I; if ( glType === _gl.SHORT ) internalFormat = _gl.R16I; if ( glType === _gl.INT ) internalFormat = _gl.R32I; } if ( glFormat === _gl.RG ) { if ( glType === _gl.FLOAT ) internalFormat = _gl.RG32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RG16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8; } if ( glFormat === _gl.RG_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RG16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RG32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.RG8I; if ( glType === _gl.SHORT ) internalFormat = _gl.RG16I; if ( glType === _gl.INT ) internalFormat = _gl.RG32I; } if ( glFormat === _gl.RGBA ) { const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); if ( glType === _gl.FLOAT ) internalFormat = _gl.RGBA32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RGBA16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; if ( glType === _gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = _gl.RGBA4; if ( glType === _gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = _gl.RGB5_A1; } if ( internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RG16F || internalFormat === _gl.RG32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F ) { extensions.get( 'EXT_color_buffer_float' ); } return internalFormat; } function getMipLevels( texture, image, supportsMips ) { if ( textureNeedsGenerateMipmaps( texture, supportsMips ) === true || ( texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) ) { return Math.log2( Math.max( image.width, image.height ) ) + 1; } else if ( texture.mipmaps !== undefined && texture.mipmaps.length > 0 ) { // user-defined mipmaps return texture.mipmaps.length; } else if ( texture.isCompressedTexture && Array.isArray( texture.image ) ) { return image.mipmaps.length; } else { // texture without mipmaps (only base level) return 1; } } // Fallback filters for non-power-of-2 textures function filterFallback( f ) { if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; } // function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); if ( texture.isVideoTexture ) { _videoTextures.delete( texture ); } } function onRenderTargetDispose( event ) { const renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); } // function deallocateTexture( texture ) { const textureProperties = properties.get( texture ); if ( textureProperties.__webglInit === undefined ) return; // check if it's necessary to remove the WebGLTexture object const source = texture.source; const webglTextures = _sources.get( source ); if ( webglTextures ) { const webglTexture = webglTextures[ textureProperties.__cacheKey ]; webglTexture.usedTimes --; // the WebGLTexture object is not used anymore, remove it if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } // remove the weak map entry if no WebGLTexture uses the source anymore if ( Object.keys( webglTextures ).length === 0 ) { _sources.delete( source ); } } properties.remove( texture ); } function deleteTexture( texture ) { const textureProperties = properties.get( texture ); _gl.deleteTexture( textureProperties.__webglTexture ); const source = texture.source; const webglTextures = _sources.get( source ); delete webglTextures[ textureProperties.__cacheKey ]; info.memory.textures --; } function deallocateRenderTarget( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLCubeRenderTarget ) { for ( let i = 0; i < 6; i ++ ) { if ( Array.isArray( renderTargetProperties.__webglFramebuffer[ i ] ) ) { for ( let level = 0; level < renderTargetProperties.__webglFramebuffer[ i ].length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ][ level ] ); } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); } if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { if ( Array.isArray( renderTargetProperties.__webglFramebuffer ) ) { for ( let level = 0; level < renderTargetProperties.__webglFramebuffer.length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ level ] ); } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); } if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); if ( renderTargetProperties.__webglColorRenderbuffer ) { for ( let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i ++ ) { if ( renderTargetProperties.__webglColorRenderbuffer[ i ] ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer[ i ] ); } } if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } const textures = renderTarget.textures; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture ) { _gl.deleteTexture( attachmentProperties.__webglTexture ); info.memory.textures --; } properties.remove( textures[ i ] ); } properties.remove( renderTarget ); } // let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { const textureUnit = textureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } textureUnits += 1; return textureUnit; } function getTextureCacheKey( texture ) { const array = []; array.push( texture.wrapS ); array.push( texture.wrapT ); array.push( texture.wrapR || 0 ); array.push( texture.magFilter ); array.push( texture.minFilter ); array.push( texture.anisotropy ); array.push( texture.internalFormat ); array.push( texture.format ); array.push( texture.type ); array.push( texture.generateMipmaps ); array.push( texture.premultiplyAlpha ); array.push( texture.flipY ); array.push( texture.unpackAlignment ); array.push( texture.colorSpace ); return array.join(); } // function setTexture2D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.isVideoTexture ) updateVideoTexture( texture ); if ( texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version ) { const image = texture.image; if ( image === null ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but no image data found.' ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTexture2DArray( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTexture3D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_3D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTextureCube( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadCubeTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } const wrappingToGL = { [ RepeatWrapping ]: _gl.REPEAT, [ ClampToEdgeWrapping ]: _gl.CLAMP_TO_EDGE, [ MirroredRepeatWrapping ]: _gl.MIRRORED_REPEAT }; const filterToGL = { [ NearestFilter ]: _gl.NEAREST, [ NearestMipmapNearestFilter ]: _gl.NEAREST_MIPMAP_NEAREST, [ NearestMipmapLinearFilter ]: _gl.NEAREST_MIPMAP_LINEAR, [ LinearFilter ]: _gl.LINEAR, [ LinearMipmapNearestFilter ]: _gl.LINEAR_MIPMAP_NEAREST, [ LinearMipmapLinearFilter ]: _gl.LINEAR_MIPMAP_LINEAR }; const compareToGL = { [ NeverCompare ]: _gl.NEVER, [ AlwaysCompare ]: _gl.ALWAYS, [ LessCompare ]: _gl.LESS, [ LessEqualCompare ]: _gl.LEQUAL, [ EqualCompare ]: _gl.EQUAL, [ GreaterEqualCompare ]: _gl.GEQUAL, [ GreaterCompare ]: _gl.GREATER, [ NotEqualCompare ]: _gl.NOTEQUAL }; function setTextureParameters( textureType, texture, supportsMips ) { if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false && ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ) ) { console.warn( 'THREE.WebGLRenderer: Unable to use linear filtering with floating point textures. OES_texture_float_linear not supported on this device.' ); } if ( supportsMips ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] ); if ( textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[ texture.minFilter ] ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); if ( textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE ); } if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' ); } } if ( texture.compareFunction ) { _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_MODE, _gl.COMPARE_REF_TO_TEXTURE ); _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] ); } if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { if ( texture.magFilter === NearestFilter ) return; if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return; if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension for WebGL 1 and WebGL 2 if ( isWebGL2 === false && ( texture.type === HalfFloatType && extensions.has( 'OES_texture_half_float_linear' ) === false ) ) return; // verify extension for WebGL 1 only if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function initTexture( textureProperties, texture ) { let forceUpload = false; if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); } // create Source <-> WebGLTextures mapping if necessary const source = texture.source; let webglTextures = _sources.get( source ); if ( webglTextures === undefined ) { webglTextures = {}; _sources.set( source, webglTextures ); } // check if there is already a WebGLTexture object for the given texture parameters const textureCacheKey = getTextureCacheKey( texture ); if ( textureCacheKey !== textureProperties.__cacheKey ) { // if not, create a new instance of WebGLTexture if ( webglTextures[ textureCacheKey ] === undefined ) { // create new entry webglTextures[ textureCacheKey ] = { texture: _gl.createTexture(), usedTimes: 0 }; info.memory.textures ++; // when a new instance of WebGLTexture was created, a texture upload is required // even if the image contents are identical forceUpload = true; } webglTextures[ textureCacheKey ].usedTimes ++; // every time the texture cache key changes, it's necessary to check if an instance of // WebGLTexture can be deleted in order to avoid a memory leak. const webglTexture = webglTextures[ textureProperties.__cacheKey ]; if ( webglTexture !== undefined ) { webglTextures[ textureProperties.__cacheKey ].usedTimes --; if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } } // store references to cache key and WebGLTexture object textureProperties.__cacheKey = textureCacheKey; textureProperties.__webglTexture = webglTextures[ textureCacheKey ].texture; } return forceUpload; } function uploadTexture( textureProperties, texture, slot ) { let textureType = _gl.TEXTURE_2D; if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) textureType = _gl.TEXTURE_2D_ARRAY; if ( texture.isData3DTexture ) textureType = _gl.TEXTURE_3D; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.bindTexture( textureType, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); const sourceProperties = properties.get( source ); if ( source.version !== sourceProperties.__version || forceUpload === true ) { state.activeTexture( _gl.TEXTURE0 + slot ); const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); const needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo$1( texture.image ) === false; let image = resizeImage( texture.image, needsPowerOfTwo, false, capabilities.maxTextureSize ); image = verifyColorSpace( texture, image ); const supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format, texture.colorSpace ); let glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture ); setTextureParameters( textureType, texture, supportsMips ); let mipmap; const mipmaps = texture.mipmaps; const useTexStorage = ( isWebGL2 && texture.isVideoTexture !== true && glInternalFormat !== RGB_ETC1_Format ); const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); const dataReady = source.dataReady; const levels = getMipLevels( texture, image, supportsMips ); if ( texture.isDepthTexture ) { // populate depth texture with dummy data glInternalFormat = _gl.DEPTH_COMPONENT; if ( isWebGL2 ) { if ( texture.type === FloatType ) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if ( texture.type === UnsignedIntType ) { glInternalFormat = _gl.DEPTH_COMPONENT24; } else if ( texture.type === UnsignedInt248Type ) { glInternalFormat = _gl.DEPTH24_STENCIL8; } else { glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D } } else { if ( texture.type === FloatType ) { console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' ); } } // validation checks for WebGL 1 if ( texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT ) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); texture.type = UnsignedIntType; glType = utils.convert( texture.type ); } } if ( texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT ) { // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if ( texture.type !== UnsignedInt248Type ) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); texture.type = UnsignedInt248Type; glType = utils.convert( texture.type ); } } // if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( _gl.TEXTURE_2D, 1, glInternalFormat, image.width, image.height ); } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); } } } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); } if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, image.width, image.height, glFormat, glType, image.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } } else if ( texture.isCompressedTexture ) { if ( texture.isCompressedArrayTexture ) { if ( useTexStorage && allocateMemory ) { state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height, image.depth ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { state.compressedTexSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data, 0, 0 ); } } else { state.compressedTexImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, mipmap.data, 0, 0 ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data ); } } else { state.texImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, glFormat, glType, mipmap.data ); } } } } else { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { state.compressedTexSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } } else { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } } else if ( texture.isDataArrayTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, image.width, image.height, image.depth ); } if ( dataReady ) { state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } } else { state.texImage3D( _gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isData3DTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( _gl.TEXTURE_3D, levels, glInternalFormat, image.width, image.height, image.depth ); } if ( dataReady ) { state.texSubImage3D( _gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } } else { state.texImage3D( _gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isFramebufferTexture ) { if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); } else { let width = image.width, height = image.height; for ( let i = 0; i < levels; i ++ ) { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, width, height, 0, glFormat, glType, null ); width >>= 1; height >>= 1; } } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 && supportsMips ) { if ( useTexStorage && allocateMemory ) { const dimensions = getDimensions( mipmaps[ 0 ] ); state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { const dimensions = getDimensions( image ); state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); } if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image ); } } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image ); } } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( textureType ); } sourceProperties.__version = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } function uploadCubeTexture( textureProperties, texture, slot ) { if ( texture.image.length !== 6 ) return; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); const sourceProperties = properties.get( source ); if ( source.version !== sourceProperties.__version || forceUpload === true ) { state.activeTexture( _gl.TEXTURE0 + slot ); const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); const isCompressed = ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ); const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); const cubeImage = []; for ( let i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } cubeImage[ i ] = verifyColorSpace( texture, cubeImage[ i ] ); } const image = cubeImage[ 0 ], supportsMips = isPowerOfTwo$1( image ) || isWebGL2, glFormat = utils.convert( texture.format, texture.colorSpace ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const useTexStorage = ( isWebGL2 && texture.isVideoTexture !== true ); const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); const dataReady = source.dataReady; let levels = getMipLevels( texture, image, supportsMips ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, supportsMips ); let mipmaps; if ( isCompressed ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, image.width, image.height ); } for ( let i = 0; i < 6; i ++ ) { mipmaps = cubeImage[ i ].mipmaps; for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { state.compressedTexSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } } else { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } } else { mipmaps = texture.mipmaps; if ( useTexStorage && allocateMemory ) { // TODO: Uniformly handle mipmap definitions // Normal textures and compressed cube textures define base level + mips with their mipmap array // Uncompressed cube textures use their mipmap array only for mips (no base level) if ( mipmaps.length > 0 ) levels ++; const dimensions = getDimensions( cubeImage[ 0 ] ); state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, dimensions.width, dimensions.height ); } for ( let i = 0; i < 6; i ++ ) { if ( isDataTexture ) { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, cubeImage[ i ].width, cubeImage[ i ].height, glFormat, glType, cubeImage[ i ].data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; const mipmapImage = mipmap.image[ i ].image; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); } } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, glFormat, glType, cubeImage[ i ] ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, glFormat, glType, mipmap.image[ i ] ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] ); } } } } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { // We assume images for cube map have the same size. generateMipmap( _gl.TEXTURE_CUBE_MAP ); } sourceProperties.__version = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, texture, attachment, textureTarget, level ) { const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const renderTargetProperties = properties.get( renderTarget ); if ( ! renderTargetProperties.__hasExternalTextures ) { const width = Math.max( 1, renderTarget.width >> level ); const height = Math.max( 1, renderTarget.height >> level ); if ( textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY ) { state.texImage3D( textureTarget, level, glInternalFormat, width, height, renderTarget.depth, 0, glFormat, glType, null ); } else { state.texImage2D( textureTarget, level, glInternalFormat, width, height, 0, glFormat, glType, null ); } } state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( texture ).__webglTexture, 0, getRenderTargetSamples( renderTarget ) ); } else if ( textureTarget === _gl.TEXTURE_2D || ( textureTarget >= _gl.TEXTURE_CUBE_MAP_POSITIVE_X && textureTarget <= _gl.TEXTURE_CUBE_MAP_NEGATIVE_Z ) ) { // see #24753 _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( texture ).__webglTexture, level ); } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { let glInternalFormat = ( isWebGL2 === true ) ? _gl.DEPTH_COMPONENT24 : _gl.DEPTH_COMPONENT16; if ( isMultisample || useMultisampledRTT( renderTarget ) ) { const depthTexture = renderTarget.depthTexture; if ( depthTexture && depthTexture.isDepthTexture ) { if ( depthTexture.type === FloatType ) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if ( depthTexture.type === UnsignedIntType ) { glInternalFormat = _gl.DEPTH_COMPONENT24; } } const samples = getRenderTargetSamples( renderTarget ); if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { const samples = getRenderTargetSamples( renderTarget ); if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height ); } else if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { const textures = renderTarget.textures; for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const samples = getRenderTargetSamples( renderTarget ); if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); } } } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' ); state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); } // upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; const samples = getRenderTargetSamples( renderTarget ); if ( renderTarget.depthTexture.format === DepthFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } } else { throw new Error( 'Unknown depthTexture format' ); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); if ( renderTarget.depthTexture && ! renderTargetProperties.__autoAllocateDepthBuffer ) { if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' ); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( let i = 0; i < 6; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); } } else { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); } } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // rebind framebuffer with external textures function rebindTextures( renderTarget, colorTexture, depthTexture ) { const renderTargetProperties = properties.get( renderTarget ); if ( colorTexture !== undefined ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, 0 ); } if ( depthTexture !== undefined ) { setupDepthRenderbuffer( renderTarget ); } } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); const textures = renderTarget.textures; const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); const isMultipleRenderTargets = ( textures.length > 1 ); const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; if ( ! isMultipleRenderTargets ) { if ( textureProperties.__webglTexture === undefined ) { textureProperties.__webglTexture = _gl.createTexture(); } textureProperties.__version = texture.version; info.memory.textures ++; } // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( let i = 0; i < 6; i ++ ) { if ( isWebGL2 && texture.mipmaps && texture.mipmaps.length > 0 ) { renderTargetProperties.__webglFramebuffer[ i ] = []; for ( let level = 0; level < texture.mipmaps.length; level ++ ) { renderTargetProperties.__webglFramebuffer[ i ][ level ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } } else { if ( isWebGL2 && texture.mipmaps && texture.mipmaps.length > 0 ) { renderTargetProperties.__webglFramebuffer = []; for ( let level = 0; level < texture.mipmaps.length; level ++ ) { renderTargetProperties.__webglFramebuffer[ level ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } if ( isMultipleRenderTargets ) { if ( capabilities.drawBuffers ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture === undefined ) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } } else { console.warn( 'THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.' ); } } if ( ( isWebGL2 && renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = []; state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; renderTargetProperties.__webglColorRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, renderTarget.isXRRenderTarget === true ); const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); if ( renderTarget.depthBuffer ) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, supportsMips ); for ( let i = 0; i < 6; i ++ ) { if ( isWebGL2 && texture.mipmaps && texture.mipmaps.length > 0 ) { for ( let level = 0; level < texture.mipmaps.length; level ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ][ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, level ); } } else { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0 ); } } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( _gl.TEXTURE_CUBE_MAP ); } state.unbindTexture(); } else if ( isMultipleRenderTargets ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachment = textures[ i ]; const attachmentProperties = properties.get( attachment ); state.bindTexture( _gl.TEXTURE_2D, attachmentProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, attachment, supportsMips ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, 0 ); if ( textureNeedsGenerateMipmaps( attachment, supportsMips ) ) { generateMipmap( _gl.TEXTURE_2D ); } } state.unbindTexture(); } else { let glTextureType = _gl.TEXTURE_2D; if ( renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget ) { if ( isWebGL2 ) { glTextureType = renderTarget.isWebGL3DRenderTarget ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; } else { console.error( 'THREE.WebGLTextures: THREE.Data3DTexture and THREE.DataArrayTexture only supported with WebGL2.' ); } } state.bindTexture( glTextureType, textureProperties.__webglTexture ); setTextureParameters( glTextureType, texture, supportsMips ); if ( isWebGL2 && texture.mipmaps && texture.mipmaps.length > 0 ) { for ( let level = 0; level < texture.mipmaps.length; level ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, level ); } } else { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, 0 ); } if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { generateMipmap( glTextureType ); } state.unbindTexture(); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { const supportsMips = isPowerOfTwo$1( renderTarget ) || isWebGL2; const textures = renderTarget.textures; for ( let i = 0, il = textures.length; i < il; i ++ ) { const texture = textures[ i ]; if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; const webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); generateMipmap( target ); state.unbindTexture(); } } } function updateMultisampleRenderTarget( renderTarget ) { if ( ( isWebGL2 && renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { const textures = renderTarget.textures; const width = renderTarget.width; const height = renderTarget.height; let mask = _gl.COLOR_BUFFER_BIT; const invalidationArray = []; const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderTargetProperties = properties.get( renderTarget ); const isMultipleRenderTargets = ( textures.length > 1 ); // If MRT we need to remove FBO attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, null ); state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, null, 0 ); } } state.bindFramebuffer( _gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { invalidationArray.push( _gl.COLOR_ATTACHMENT0 + i ); if ( renderTarget.depthBuffer ) { invalidationArray.push( depthStyle ); } const ignoreDepthValues = ( renderTargetProperties.__ignoreDepthValues !== undefined ) ? renderTargetProperties.__ignoreDepthValues : false; if ( ignoreDepthValues === false ) { if ( renderTarget.depthBuffer ) mask |= _gl.DEPTH_BUFFER_BIT; if ( renderTarget.stencilBuffer ) mask |= _gl.STENCIL_BUFFER_BIT; } if ( isMultipleRenderTargets ) { _gl.framebufferRenderbuffer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); } if ( ignoreDepthValues === true ) { _gl.invalidateFramebuffer( _gl.READ_FRAMEBUFFER, [ depthStyle ] ); _gl.invalidateFramebuffer( _gl.DRAW_FRAMEBUFFER, [ depthStyle ] ); } if ( isMultipleRenderTargets ) { const webglTexture = properties.get( textures[ i ] ).__webglTexture; _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, webglTexture, 0 ); } _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST ); if ( supportsInvalidateFramebuffer ) { _gl.invalidateFramebuffer( _gl.READ_FRAMEBUFFER, invalidationArray ); } } state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null ); state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null ); // If MRT since pre-blit we removed the FBO we need to reconstruct the attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const webglTexture = properties.get( textures[ i ] ).__webglTexture; state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, webglTexture, 0 ); } } state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); } } function getRenderTargetSamples( renderTarget ) { return Math.min( capabilities.maxSamples, renderTarget.samples ); } function useMultisampledRTT( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); return isWebGL2 && renderTarget.samples > 0 && extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTargetProperties.__useRenderToTexture !== false; } function updateVideoTexture( texture ) { const frame = info.render.frame; // Check the last frame we updated the VideoTexture if ( _videoTextures.get( texture ) !== frame ) { _videoTextures.set( texture, frame ); texture.update(); } } function verifyColorSpace( texture, image ) { const colorSpace = texture.colorSpace; const format = texture.format; const type = texture.type; if ( texture.isCompressedTexture === true || texture.isVideoTexture === true || texture.format === _SRGBAFormat ) return image; if ( colorSpace !== LinearSRGBColorSpace && colorSpace !== NoColorSpace ) { // sRGB if ( ColorManagement.getTransfer( colorSpace ) === SRGBTransfer ) { if ( isWebGL2 === false ) { // in WebGL 1, try to use EXT_sRGB extension and unsized formats if ( extensions.has( 'EXT_sRGB' ) === true && format === RGBAFormat ) { texture.format = _SRGBAFormat; // it's not possible to generate mips in WebGL 1 with this extension texture.minFilter = LinearFilter; texture.generateMipmaps = false; } else { // slow fallback (CPU decode) image = ImageUtils.sRGBToLinear( image ); } } else { // in WebGL 2 uncompressed textures can only be sRGB encoded if they have the RGBA8 format if ( format !== RGBAFormat || type !== UnsignedByteType ) { console.warn( 'THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType.' ); } } } else { console.error( 'THREE.WebGLTextures: Unsupported texture color space:', colorSpace ); } } return image; } function getDimensions( image ) { if ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) { // if intrinsic data are not available, fallback to width/height _imageDimensions.width = image.naturalWidth || image.width; _imageDimensions.height = image.naturalHeight || image.height; } else if ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) { _imageDimensions.width = image.displayWidth; _imageDimensions.height = image.displayHeight; } else { _imageDimensions.width = image.width; _imageDimensions.height = image.height; } return _imageDimensions; } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.rebindTextures = rebindTextures; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.setupDepthRenderbuffer = setupDepthRenderbuffer; this.setupFrameBufferTexture = setupFrameBufferTexture; this.useMultisampledRTT = useMultisampledRTT; } function WebGLUtils( gl, extensions, capabilities ) { const isWebGL2 = capabilities.isWebGL2; function convert( p, colorSpace = NoColorSpace ) { let extension; const transfer = ColorManagement.getTransfer( colorSpace ); if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; if ( p === ByteType ) return gl.BYTE; if ( p === ShortType ) return gl.SHORT; if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; if ( p === IntType ) return gl.INT; if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; if ( p === FloatType ) return gl.FLOAT; if ( p === HalfFloatType ) { if ( isWebGL2 ) return gl.HALF_FLOAT; extension = extensions.get( 'OES_texture_half_float' ); if ( extension !== null ) { return extension.HALF_FLOAT_OES; } else { return null; } } if ( p === AlphaFormat ) return gl.ALPHA; if ( p === RGBAFormat ) return gl.RGBA; if ( p === LuminanceFormat ) return gl.LUMINANCE; if ( p === LuminanceAlphaFormat ) return gl.LUMINANCE_ALPHA; if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; // WebGL 1 sRGB fallback if ( p === _SRGBAFormat ) { extension = extensions.get( 'EXT_sRGB' ); if ( extension !== null ) { return extension.SRGB_ALPHA_EXT; } else { return null; } } // WebGL2 formats. if ( p === RedFormat ) return gl.RED; if ( p === RedIntegerFormat ) return gl.RED_INTEGER; if ( p === RGFormat ) return gl.RG; if ( p === RGIntegerFormat ) return gl.RG_INTEGER; if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER; // S3TC if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { if ( transfer === SRGBTransfer ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; } else { return null; } } else { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } } // PVRTC if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } // ETC1 if ( p === RGB_ETC1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); if ( extension !== null ) { return extension.COMPRESSED_RGB_ETC1_WEBGL; } else { return null; } } // ETC2 if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc' ); if ( extension !== null ) { if ( p === RGB_ETC2_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; if ( p === RGBA_ETC2_EAC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; } else { return null; } } // ASTC if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_astc' ); if ( extension !== null ) { if ( p === RGBA_ASTC_4x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; if ( p === RGBA_ASTC_5x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; if ( p === RGBA_ASTC_5x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; if ( p === RGBA_ASTC_6x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; if ( p === RGBA_ASTC_6x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; if ( p === RGBA_ASTC_8x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; if ( p === RGBA_ASTC_8x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; if ( p === RGBA_ASTC_8x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; if ( p === RGBA_ASTC_10x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; if ( p === RGBA_ASTC_10x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; if ( p === RGBA_ASTC_10x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; if ( p === RGBA_ASTC_10x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; if ( p === RGBA_ASTC_12x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; if ( p === RGBA_ASTC_12x12_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; } else { return null; } } // BPTC if ( p === RGBA_BPTC_Format || p === RGB_BPTC_SIGNED_Format || p === RGB_BPTC_UNSIGNED_Format ) { extension = extensions.get( 'EXT_texture_compression_bptc' ); if ( extension !== null ) { if ( p === RGBA_BPTC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; if ( p === RGB_BPTC_SIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_SIGNED_FLOAT_EXT; if ( p === RGB_BPTC_UNSIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_EXT; } else { return null; } } // RGTC if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) { extension = extensions.get( 'EXT_texture_compression_rgtc' ); if ( extension !== null ) { if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT; if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; } else { return null; } } // if ( p === UnsignedInt248Type ) { if ( isWebGL2 ) return gl.UNSIGNED_INT_24_8; extension = extensions.get( 'WEBGL_depth_texture' ); if ( extension !== null ) { return extension.UNSIGNED_INT_24_8_WEBGL; } else { return null; } } // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) return ( gl[ p ] !== undefined ) ? gl[ p ] : null; } return { convert: convert }; } class ArrayCamera extends PerspectiveCamera { constructor( array = [] ) { super(); this.isArrayCamera = true; this.cameras = array; } } let Group$1 = class Group extends Object3D { constructor() { super(); this.isGroup = true; this.type = 'Group'; } }; const _moveEvent = { type: 'move' }; class WebXRController { constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if ( this._hand === null ) { this._hand = new Group$1(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if ( this._targetRay === null ) { this._targetRay = new Group$1(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if ( this._grip === null ) { this._grip = new Group$1(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent( event ) { if ( this._targetRay !== null ) { this._targetRay.dispatchEvent( event ); } if ( this._grip !== null ) { this._grip.dispatchEvent( event ); } if ( this._hand !== null ) { this._hand.dispatchEvent( event ); } return this; } connect( inputSource ) { if ( inputSource && inputSource.hand ) { const hand = this._hand; if ( hand ) { for ( const inputjoint of inputSource.hand.values() ) { // Initialize hand with joints when connected this._getHandJoint( hand, inputjoint ); } } } this.dispatchEvent( { type: 'connected', data: inputSource } ); return this; } disconnect( inputSource ) { this.dispatchEvent( { type: 'disconnected', data: inputSource } ); if ( this._targetRay !== null ) { this._targetRay.visible = false; } if ( this._grip !== null ) { this._grip.visible = false; } if ( this._hand !== null ) { this._hand.visible = false; } return this; } update( inputSource, frame, referenceSpace ) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if ( inputSource && frame.session.visibilityState !== 'visible-blurred' ) { if ( hand && inputSource.hand ) { handPose = true; for ( const inputjoint of inputSource.hand.values() ) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose( inputjoint, referenceSpace ); // The transform of this joint will be updated with the joint pose on each frame const joint = this._getHandJoint( hand, inputjoint ); if ( jointPose !== null ) { joint.matrix.fromArray( jointPose.transform.matrix ); joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); joint.matrixWorldNeedsUpdate = true; joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } // Custom events // Check pinchz const indexTip = hand.joints[ 'index-finger-tip' ]; const thumbTip = hand.joints[ 'thumb-tip' ]; const distance = indexTip.position.distanceTo( thumbTip.position ); const distanceToPinch = 0.02; const threshold = 0.005; if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { hand.inputState.pinching = false; this.dispatchEvent( { type: 'pinchend', handedness: inputSource.handedness, target: this } ); } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { hand.inputState.pinching = true; this.dispatchEvent( { type: 'pinchstart', handedness: inputSource.handedness, target: this } ); } } else { if ( grip !== null && inputSource.gripSpace ) { gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); if ( gripPose !== null ) { grip.matrix.fromArray( gripPose.transform.matrix ); grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); grip.matrixWorldNeedsUpdate = true; if ( gripPose.linearVelocity ) { grip.hasLinearVelocity = true; grip.linearVelocity.copy( gripPose.linearVelocity ); } else { grip.hasLinearVelocity = false; } if ( gripPose.angularVelocity ) { grip.hasAngularVelocity = true; grip.angularVelocity.copy( gripPose.angularVelocity ); } else { grip.hasAngularVelocity = false; } } } } if ( targetRay !== null ) { inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); // Some runtimes (namely Vive Cosmos with Vive OpenXR Runtime) have only grip space and ray space is equal to it if ( inputPose === null && gripPose !== null ) { inputPose = gripPose; } if ( inputPose !== null ) { targetRay.matrix.fromArray( inputPose.transform.matrix ); targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); targetRay.matrixWorldNeedsUpdate = true; if ( inputPose.linearVelocity ) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy( inputPose.linearVelocity ); } else { targetRay.hasLinearVelocity = false; } if ( inputPose.angularVelocity ) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy( inputPose.angularVelocity ); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent( _moveEvent ); } } } if ( targetRay !== null ) { targetRay.visible = ( inputPose !== null ); } if ( grip !== null ) { grip.visible = ( gripPose !== null ); } if ( hand !== null ) { hand.visible = ( handPose !== null ); } return this; } // private method _getHandJoint( hand, inputjoint ) { if ( hand.joints[ inputjoint.jointName ] === undefined ) { const joint = new Group$1(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[ inputjoint.jointName ] = joint; hand.add( joint ); } return hand.joints[ inputjoint.jointName ]; } } const _occlusion_vertex = ` void main() { gl_Position = vec4( position, 1.0 ); }`; const _occlusion_fragment = ` uniform sampler2DArray depthColor; uniform float depthWidth; uniform float depthHeight; void main() { vec2 coord = vec2( gl_FragCoord.x / depthWidth, gl_FragCoord.y / depthHeight ); if ( coord.x >= 1.0 ) { gl_FragDepthEXT = texture( depthColor, vec3( coord.x - 1.0, coord.y, 1 ) ).r; } else { gl_FragDepthEXT = texture( depthColor, vec3( coord.x, coord.y, 0 ) ).r; } }`; class WebXRDepthSensing { constructor() { this.texture = null; this.mesh = null; this.depthNear = 0; this.depthFar = 0; } init( renderer, depthData, renderState ) { if ( this.texture === null ) { const texture = new Texture(); const texProps = renderer.properties.get( texture ); texProps.__webglTexture = depthData.texture; if ( ( depthData.depthNear != renderState.depthNear ) || ( depthData.depthFar != renderState.depthFar ) ) { this.depthNear = depthData.depthNear; this.depthFar = depthData.depthFar; } this.texture = texture; } } render( renderer, cameraXR ) { if ( this.texture !== null ) { if ( this.mesh === null ) { const viewport = cameraXR.cameras[ 0 ].viewport; const material = new ShaderMaterial( { extensions: { fragDepth: true }, vertexShader: _occlusion_vertex, fragmentShader: _occlusion_fragment, uniforms: { depthColor: { value: this.texture }, depthWidth: { value: viewport.z }, depthHeight: { value: viewport.w } } } ); this.mesh = new Mesh( new PlaneGeometry( 20, 20 ), material ); } renderer.render( this.mesh, cameraXR ); } } reset() { this.texture = null; this.mesh = null; } } class WebXRManager extends EventDispatcher { constructor( renderer, gl ) { super(); const scope = this; let session = null; let framebufferScaleFactor = 1.0; let referenceSpace = null; let referenceSpaceType = 'local-floor'; // Set default foveation to maximum. let foveation = 1.0; let customReferenceSpace = null; let pose = null; let glBinding = null; let glProjLayer = null; let glBaseLayer = null; let xrFrame = null; const depthSensing = new WebXRDepthSensing(); const attributes = gl.getContextAttributes(); let initialRenderTarget = null; let newRenderTarget = null; const controllers = []; const controllerInputSources = []; const currentSize = new Vector2(); let currentPixelRatio = null; // const cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4(); const cameras = [ cameraL, cameraR ]; const cameraXR = new ArrayCamera(); cameraXR.layers.enable( 1 ); cameraXR.layers.enable( 2 ); let _currentDepthNear = null; let _currentDepthFar = null; // this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.getController = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getGripSpace(); }; this.getHand = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getHandSpace(); }; // function onSessionEvent( event ) { const controllerIndex = controllerInputSources.indexOf( event.inputSource ); if ( controllerIndex === - 1 ) { return; } const controller = controllers[ controllerIndex ]; if ( controller !== undefined ) { controller.update( event.inputSource, event.frame, customReferenceSpace || referenceSpace ); controller.dispatchEvent( { type: event.type, data: event.inputSource } ); } } function onSessionEnd() { session.removeEventListener( 'select', onSessionEvent ); session.removeEventListener( 'selectstart', onSessionEvent ); session.removeEventListener( 'selectend', onSessionEvent ); session.removeEventListener( 'squeeze', onSessionEvent ); session.removeEventListener( 'squeezestart', onSessionEvent ); session.removeEventListener( 'squeezeend', onSessionEvent ); session.removeEventListener( 'end', onSessionEnd ); session.removeEventListener( 'inputsourceschange', onInputSourcesChange ); for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; if ( inputSource === null ) continue; controllerInputSources[ i ] = null; controllers[ i ].disconnect( inputSource ); } _currentDepthNear = null; _currentDepthFar = null; depthSensing.reset(); // restore framebuffer/rendering state renderer.setRenderTarget( initialRenderTarget ); glBaseLayer = null; glProjLayer = null; glBinding = null; session = null; newRenderTarget = null; // animation.stop(); scope.isPresenting = false; renderer.setPixelRatio( currentPixelRatio ); renderer.setSize( currentSize.width, currentSize.height, false ); scope.dispatchEvent( { type: 'sessionend' } ); } this.setFramebufferScaleFactor = function ( value ) { framebufferScaleFactor = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); } }; this.setReferenceSpaceType = function ( value ) { referenceSpaceType = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); } }; this.getReferenceSpace = function () { return customReferenceSpace || referenceSpace; }; this.setReferenceSpace = function ( space ) { customReferenceSpace = space; }; this.getBaseLayer = function () { return glProjLayer !== null ? glProjLayer : glBaseLayer; }; this.getBinding = function () { return glBinding; }; this.getFrame = function () { return xrFrame; }; this.getSession = function () { return session; }; this.setSession = async function ( value ) { session = value; if ( session !== null ) { initialRenderTarget = renderer.getRenderTarget(); session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'squeeze', onSessionEvent ); session.addEventListener( 'squeezestart', onSessionEvent ); session.addEventListener( 'squeezeend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd ); session.addEventListener( 'inputsourceschange', onInputSourcesChange ); if ( attributes.xrCompatible !== true ) { await gl.makeXRCompatible(); } currentPixelRatio = renderer.getPixelRatio(); renderer.getSize( currentSize ); if ( ( session.renderState.layers === undefined ) || ( renderer.capabilities.isWebGL2 === false ) ) { const layerInit = { antialias: ( session.renderState.layers === undefined ) ? attributes.antialias : true, alpha: true, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { baseLayer: glBaseLayer } ); renderer.setPixelRatio( 1 ); renderer.setSize( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false ); newRenderTarget = new WebGLRenderTarget( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { format: RGBAFormat, type: UnsignedByteType, colorSpace: renderer.outputColorSpace, stencilBuffer: attributes.stencil } ); } else { let depthFormat = null; let depthType = null; let glDepthFormat = null; if ( attributes.depth ) { glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType; } const projectionlayerInit = { colorFormat: gl.RGBA8, depthFormat: glDepthFormat, scaleFactor: framebufferScaleFactor }; glBinding = new XRWebGLBinding( session, gl ); glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); session.updateRenderState( { layers: [ glProjLayer ] } ); renderer.setPixelRatio( 1 ); renderer.setSize( glProjLayer.textureWidth, glProjLayer.textureHeight, false ); newRenderTarget = new WebGLRenderTarget( glProjLayer.textureWidth, glProjLayer.textureHeight, { format: RGBAFormat, type: UnsignedByteType, depthTexture: new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat ), stencilBuffer: attributes.stencil, colorSpace: renderer.outputColorSpace, samples: attributes.antialias ? 4 : 0 } ); const renderTargetProperties = renderer.properties.get( newRenderTarget ); renderTargetProperties.__ignoreDepthValues = glProjLayer.ignoreDepthValues; } newRenderTarget.isXRRenderTarget = true; // TODO Remove this when possible, see #23278 this.setFoveation( foveation ); customReferenceSpace = null; referenceSpace = await session.requestReferenceSpace( referenceSpaceType ); animation.setContext( session ); animation.start(); scope.isPresenting = true; scope.dispatchEvent( { type: 'sessionstart' } ); } }; this.getEnvironmentBlendMode = function () { if ( session !== null ) { return session.environmentBlendMode; } }; function onInputSourcesChange( event ) { // Notify disconnected for ( let i = 0; i < event.removed.length; i ++ ) { const inputSource = event.removed[ i ]; const index = controllerInputSources.indexOf( inputSource ); if ( index >= 0 ) { controllerInputSources[ index ] = null; controllers[ index ].disconnect( inputSource ); } } // Notify connected for ( let i = 0; i < event.added.length; i ++ ) { const inputSource = event.added[ i ]; let controllerIndex = controllerInputSources.indexOf( inputSource ); if ( controllerIndex === - 1 ) { // Assign input source a controller that currently has no input source for ( let i = 0; i < controllers.length; i ++ ) { if ( i >= controllerInputSources.length ) { controllerInputSources.push( inputSource ); controllerIndex = i; break; } else if ( controllerInputSources[ i ] === null ) { controllerInputSources[ i ] = inputSource; controllerIndex = i; break; } } // If all controllers do currently receive input we ignore new ones if ( controllerIndex === - 1 ) break; } const controller = controllers[ controllerIndex ]; if ( controller ) { controller.connect( inputSource ); } } } // const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion( camera, cameraL, cameraR ) { cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); const ipd = cameraLPos.distanceTo( cameraRPos ); const projL = cameraL.projectionMatrix.elements; const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; const left = near * leftFov; const right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / ( - leftFov + rightFov ); const xOffset = zOffset * - leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); camera.translateX( xOffset ); camera.translateZ( zOffset ); camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + ( ipd - xOffset ); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); } function updateCamera( camera, parent ) { if ( parent === null ) { camera.matrixWorld.copy( camera.matrix ); } else { camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); } camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); } this.updateCamera = function ( camera ) { if ( session === null ) return; if ( depthSensing.texture !== null ) { camera.near = depthSensing.depthNear; camera.far = depthSensing.depthFar; } cameraXR.near = cameraR.near = cameraL.near = camera.near; cameraXR.far = cameraR.far = cameraL.far = camera.far; if ( _currentDepthNear !== cameraXR.near || _currentDepthFar !== cameraXR.far ) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState( { depthNear: cameraXR.near, depthFar: cameraXR.far } ); _currentDepthNear = cameraXR.near; _currentDepthFar = cameraXR.far; cameraL.near = _currentDepthNear; cameraL.far = _currentDepthFar; cameraR.near = _currentDepthNear; cameraR.far = _currentDepthFar; cameraL.updateProjectionMatrix(); cameraR.updateProjectionMatrix(); camera.updateProjectionMatrix(); } const parent = camera.parent; const cameras = cameraXR.cameras; updateCamera( cameraXR, parent ); for ( let i = 0; i < cameras.length; i ++ ) { updateCamera( cameras[ i ], parent ); } // update projection matrix for proper view frustum culling if ( cameras.length === 2 ) { setProjectionFromUnion( cameraXR, cameraL, cameraR ); } else { // assume single camera setup (AR) cameraXR.projectionMatrix.copy( cameraL.projectionMatrix ); } // update user camera and its children updateUserCamera( camera, cameraXR, parent ); }; function updateUserCamera( camera, cameraXR, parent ) { if ( parent === null ) { camera.matrix.copy( cameraXR.matrixWorld ); } else { camera.matrix.copy( parent.matrixWorld ); camera.matrix.invert(); camera.matrix.multiply( cameraXR.matrixWorld ); } camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); camera.updateMatrixWorld( true ); camera.projectionMatrix.copy( cameraXR.projectionMatrix ); camera.projectionMatrixInverse.copy( cameraXR.projectionMatrixInverse ); if ( camera.isPerspectiveCamera ) { camera.fov = RAD2DEG * 2 * Math.atan( 1 / camera.projectionMatrix.elements[ 5 ] ); camera.zoom = 1; } } this.getCamera = function () { return cameraXR; }; this.getFoveation = function () { if ( glProjLayer === null && glBaseLayer === null ) { return undefined; } return foveation; }; this.setFoveation = function ( value ) { // 0 = no foveation = full resolution // 1 = maximum foveation = the edges render at lower resolution foveation = value; if ( glProjLayer !== null ) { glProjLayer.fixedFoveation = value; } if ( glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined ) { glBaseLayer.fixedFoveation = value; } }; this.hasDepthSensing = function () { return depthSensing.texture !== null; }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time, frame ) { pose = frame.getViewerPose( customReferenceSpace || referenceSpace ); xrFrame = frame; if ( pose !== null ) { const views = pose.views; if ( glBaseLayer !== null ) { renderer.setRenderTargetFramebuffer( newRenderTarget, glBaseLayer.framebuffer ); renderer.setRenderTarget( newRenderTarget ); } let cameraXRNeedsUpdate = false; // check if it's necessary to rebuild cameraXR's camera list if ( views.length !== cameraXR.cameras.length ) { cameraXR.cameras.length = 0; cameraXRNeedsUpdate = true; } for ( let i = 0; i < views.length; i ++ ) { const view = views[ i ]; let viewport = null; if ( glBaseLayer !== null ) { viewport = glBaseLayer.getViewport( view ); } else { const glSubImage = glBinding.getViewSubImage( glProjLayer, view ); viewport = glSubImage.viewport; // For side-by-side projection, we only produce a single texture for both eyes. if ( i === 0 ) { renderer.setRenderTargetTextures( newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture ); renderer.setRenderTarget( newRenderTarget ); } } let camera = cameras[ i ]; if ( camera === undefined ) { camera = new PerspectiveCamera(); camera.layers.enable( i ); camera.viewport = new Vector4(); cameras[ i ] = camera; } camera.matrix.fromArray( view.transform.matrix ); camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); if ( i === 0 ) { cameraXR.matrix.copy( camera.matrix ); cameraXR.matrix.decompose( cameraXR.position, cameraXR.quaternion, cameraXR.scale ); } if ( cameraXRNeedsUpdate === true ) { cameraXR.cameras.push( camera ); } } // const enabledFeatures = session.enabledFeatures; if ( enabledFeatures && enabledFeatures.includes( 'depth-sensing' ) ) { const depthData = glBinding.getDepthInformation( views[ 0 ] ); if ( depthData && depthData.isValid && depthData.texture ) { depthSensing.init( renderer, depthData, session.renderState ); } } } // for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; const controller = controllers[ i ]; if ( inputSource !== null && controller !== undefined ) { controller.update( inputSource, frame, customReferenceSpace || referenceSpace ); } } depthSensing.render( renderer, cameraXR ); if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame ); if ( frame.detectedPlanes ) { scope.dispatchEvent( { type: 'planesdetected', data: frame } ); } xrFrame = null; } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } } const _e1 = /*@__PURE__*/ new Euler(); const _m1 = /*@__PURE__*/ new Matrix4(); function WebGLMaterials( renderer, properties ) { function refreshTransformUniform( map, uniform ) { if ( map.matrixAutoUpdate === true ) { map.updateMatrix(); } uniform.value.copy( map.matrix ); } function refreshFogUniforms( uniforms, fog ) { fog.color.getRGB( uniforms.fogColor.value, getUnlitUniformColorSpace( renderer ) ); if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms( uniforms, material, pixelRatio, height, transmissionRenderTarget ) { if ( material.isMeshBasicMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsToon( uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsPhong( uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsStandard( uniforms, material ); if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ); } } else if ( material.isMeshMatcapMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsMatcap( uniforms, material ); } else if ( material.isMeshDepthMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshDistanceMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDistance( uniforms, material ); } else if ( material.isMeshNormalMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isLineBasicMaterial ) { refreshUniformsLine( uniforms, material ); if ( material.isLineDashedMaterial ) { refreshUniformsDash( uniforms, material ); } } else if ( material.isPointsMaterial ) { refreshUniformsPoints( uniforms, material, pixelRatio, height ); } else if ( material.isSpriteMaterial ) { refreshUniformsSprites( uniforms, material ); } else if ( material.isShadowMaterial ) { uniforms.color.value.copy( material.color ); uniforms.opacity.value = material.opacity; } else if ( material.isShaderMaterial ) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( material.color ) { uniforms.diffuse.value.copy( material.color ); } if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; refreshTransformUniform( material.bumpMap, uniforms.bumpMapTransform ); uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; refreshTransformUniform( material.normalMap, uniforms.normalMapTransform ); uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; refreshTransformUniform( material.displacementMap, uniforms.displacementMapTransform ); uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; refreshTransformUniform( material.emissiveMap, uniforms.emissiveMapTransform ); } if ( material.specularMap ) { uniforms.specularMap.value = material.specularMap; refreshTransformUniform( material.specularMap, uniforms.specularMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } const materialProperties = properties.get( material ); const envMap = materialProperties.envMap; const envMapRotation = materialProperties.envMapRotation; if ( envMap ) { uniforms.envMap.value = envMap; _e1.copy( envMapRotation ); // accommodate left-handed frame _e1.x *= - 1; _e1.y *= - 1; _e1.z *= - 1; if ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) { // environment maps which are not cube render targets or PMREMs follow a different convention _e1.y *= - 1; _e1.z *= - 1; } uniforms.envMapRotation.value.setFromMatrix4( _m1.makeRotationFromEuler( _e1 ) ); uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.ior.value = material.ior; uniforms.refractionRatio.value = material.refractionRatio; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; // artist-friendly light intensity scaling factor const scaleFactor = ( renderer._useLegacyLights === true ) ? Math.PI : 1; uniforms.lightMapIntensity.value = material.lightMapIntensity * scaleFactor; refreshTransformUniform( material.lightMap, uniforms.lightMapTransform ); } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; refreshTransformUniform( material.aoMap, uniforms.aoMapTransform ); } } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.uvTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } } function refreshUniformsSprites( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value.copy( material.specular ); uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) } function refreshUniformsToon( uniforms, material ) { if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } } function refreshUniformsStandard( uniforms, material ) { uniforms.metalness.value = material.metalness; if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; refreshTransformUniform( material.metalnessMap, uniforms.metalnessMapTransform ); } uniforms.roughness.value = material.roughness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; refreshTransformUniform( material.roughnessMap, uniforms.roughnessMapTransform ); } const envMap = properties.get( material ).envMap; if ( envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ) { uniforms.ior.value = material.ior; // also part of uniforms common if ( material.sheen > 0 ) { uniforms.sheenColor.value.copy( material.sheenColor ).multiplyScalar( material.sheen ); uniforms.sheenRoughness.value = material.sheenRoughness; if ( material.sheenColorMap ) { uniforms.sheenColorMap.value = material.sheenColorMap; refreshTransformUniform( material.sheenColorMap, uniforms.sheenColorMapTransform ); } if ( material.sheenRoughnessMap ) { uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; refreshTransformUniform( material.sheenRoughnessMap, uniforms.sheenRoughnessMapTransform ); } } if ( material.clearcoat > 0 ) { uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if ( material.clearcoatMap ) { uniforms.clearcoatMap.value = material.clearcoatMap; refreshTransformUniform( material.clearcoatMap, uniforms.clearcoatMapTransform ); } if ( material.clearcoatRoughnessMap ) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; refreshTransformUniform( material.clearcoatRoughnessMap, uniforms.clearcoatRoughnessMapTransform ); } if ( material.clearcoatNormalMap ) { uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; refreshTransformUniform( material.clearcoatNormalMap, uniforms.clearcoatNormalMapTransform ); uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); if ( material.side === BackSide ) { uniforms.clearcoatNormalScale.value.negate(); } } } if ( material.iridescence > 0 ) { uniforms.iridescence.value = material.iridescence; uniforms.iridescenceIOR.value = material.iridescenceIOR; uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[ 0 ]; uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[ 1 ]; if ( material.iridescenceMap ) { uniforms.iridescenceMap.value = material.iridescenceMap; refreshTransformUniform( material.iridescenceMap, uniforms.iridescenceMapTransform ); } if ( material.iridescenceThicknessMap ) { uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap; refreshTransformUniform( material.iridescenceThicknessMap, uniforms.iridescenceThicknessMapTransform ); } } if ( material.transmission > 0 ) { uniforms.transmission.value = material.transmission; uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set( transmissionRenderTarget.width, transmissionRenderTarget.height ); if ( material.transmissionMap ) { uniforms.transmissionMap.value = material.transmissionMap; refreshTransformUniform( material.transmissionMap, uniforms.transmissionMapTransform ); } uniforms.thickness.value = material.thickness; if ( material.thicknessMap ) { uniforms.thicknessMap.value = material.thicknessMap; refreshTransformUniform( material.thicknessMap, uniforms.thicknessMapTransform ); } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationColor.value.copy( material.attenuationColor ); } if ( material.anisotropy > 0 ) { uniforms.anisotropyVector.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); if ( material.anisotropyMap ) { uniforms.anisotropyMap.value = material.anisotropyMap; refreshTransformUniform( material.anisotropyMap, uniforms.anisotropyMapTransform ); } } uniforms.specularIntensity.value = material.specularIntensity; uniforms.specularColor.value.copy( material.specularColor ); if ( material.specularColorMap ) { uniforms.specularColorMap.value = material.specularColorMap; refreshTransformUniform( material.specularColorMap, uniforms.specularColorMapTransform ); } if ( material.specularIntensityMap ) { uniforms.specularIntensityMap.value = material.specularIntensityMap; refreshTransformUniform( material.specularIntensityMap, uniforms.specularIntensityMapTransform ); } } function refreshUniformsMatcap( uniforms, material ) { if ( material.matcap ) { uniforms.matcap.value = material.matcap; } } function refreshUniformsDistance( uniforms, material ) { const light = properties.get( material ).light; uniforms.referencePosition.value.setFromMatrixPosition( light.matrixWorld ); uniforms.nearDistance.value = light.shadow.camera.near; uniforms.farDistance.value = light.shadow.camera.far; } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function WebGLUniformsGroups( gl, info, capabilities, state ) { let buffers = {}; let updateList = {}; let allocatedBindingPoints = []; const maxBindingPoints = ( capabilities.isWebGL2 ) ? gl.getParameter( gl.MAX_UNIFORM_BUFFER_BINDINGS ) : 0; // binding points are global whereas block indices are per shader program function bind( uniformsGroup, program ) { const webglProgram = program.program; state.uniformBlockBinding( uniformsGroup, webglProgram ); } function update( uniformsGroup, program ) { let buffer = buffers[ uniformsGroup.id ]; if ( buffer === undefined ) { prepareUniformsGroup( uniformsGroup ); buffer = createBuffer( uniformsGroup ); buffers[ uniformsGroup.id ] = buffer; uniformsGroup.addEventListener( 'dispose', onUniformsGroupsDispose ); } // ensure to update the binding points/block indices mapping for this program const webglProgram = program.program; state.updateUBOMapping( uniformsGroup, webglProgram ); // update UBO once per frame const frame = info.render.frame; if ( updateList[ uniformsGroup.id ] !== frame ) { updateBufferData( uniformsGroup ); updateList[ uniformsGroup.id ] = frame; } } function createBuffer( uniformsGroup ) { // the setup of an UBO is independent of a particular shader program but global const bindingPointIndex = allocateBindingPointIndex(); uniformsGroup.__bindingPointIndex = bindingPointIndex; const buffer = gl.createBuffer(); const size = uniformsGroup.__size; const usage = uniformsGroup.usage; gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); gl.bufferData( gl.UNIFORM_BUFFER, size, usage ); gl.bindBuffer( gl.UNIFORM_BUFFER, null ); gl.bindBufferBase( gl.UNIFORM_BUFFER, bindingPointIndex, buffer ); return buffer; } function allocateBindingPointIndex() { for ( let i = 0; i < maxBindingPoints; i ++ ) { if ( allocatedBindingPoints.indexOf( i ) === - 1 ) { allocatedBindingPoints.push( i ); return i; } } console.error( 'THREE.WebGLRenderer: Maximum number of simultaneously usable uniforms groups reached.' ); return 0; } function updateBufferData( uniformsGroup ) { const buffer = buffers[ uniformsGroup.id ]; const uniforms = uniformsGroup.uniforms; const cache = uniformsGroup.__cache; gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); for ( let i = 0, il = uniforms.length; i < il; i ++ ) { const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { const uniform = uniformArray[ j ]; if ( hasUniformChanged( uniform, i, j, cache ) === true ) { const offset = uniform.__offset; const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; let arrayOffset = 0; for ( let k = 0; k < values.length; k ++ ) { const value = values[ k ]; const info = getUniformSize( value ); // TODO add integer and struct support if ( typeof value === 'number' || typeof value === 'boolean' ) { uniform.__data[ 0 ] = value; gl.bufferSubData( gl.UNIFORM_BUFFER, offset + arrayOffset, uniform.__data ); } else if ( value.isMatrix3 ) { // manually converting 3x3 to 3x4 uniform.__data[ 0 ] = value.elements[ 0 ]; uniform.__data[ 1 ] = value.elements[ 1 ]; uniform.__data[ 2 ] = value.elements[ 2 ]; uniform.__data[ 3 ] = 0; uniform.__data[ 4 ] = value.elements[ 3 ]; uniform.__data[ 5 ] = value.elements[ 4 ]; uniform.__data[ 6 ] = value.elements[ 5 ]; uniform.__data[ 7 ] = 0; uniform.__data[ 8 ] = value.elements[ 6 ]; uniform.__data[ 9 ] = value.elements[ 7 ]; uniform.__data[ 10 ] = value.elements[ 8 ]; uniform.__data[ 11 ] = 0; } else { value.toArray( uniform.__data, arrayOffset ); arrayOffset += info.storage / Float32Array.BYTES_PER_ELEMENT; } } gl.bufferSubData( gl.UNIFORM_BUFFER, offset, uniform.__data ); } } } gl.bindBuffer( gl.UNIFORM_BUFFER, null ); } function hasUniformChanged( uniform, index, indexArray, cache ) { const value = uniform.value; const indexString = index + '_' + indexArray; if ( cache[ indexString ] === undefined ) { // cache entry does not exist so far if ( typeof value === 'number' || typeof value === 'boolean' ) { cache[ indexString ] = value; } else { cache[ indexString ] = value.clone(); } return true; } else { const cachedObject = cache[ indexString ]; // compare current value with cached entry if ( typeof value === 'number' || typeof value === 'boolean' ) { if ( cachedObject !== value ) { cache[ indexString ] = value; return true; } } else { if ( cachedObject.equals( value ) === false ) { cachedObject.copy( value ); return true; } } } return false; } function prepareUniformsGroup( uniformsGroup ) { // determine total buffer size according to the STD140 layout // Hint: STD140 is the only supported layout in WebGL 2 const uniforms = uniformsGroup.uniforms; let offset = 0; // global buffer offset in bytes const chunkSize = 16; // size of a chunk in bytes for ( let i = 0, l = uniforms.length; i < l; i ++ ) { const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { const uniform = uniformArray[ j ]; const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; for ( let k = 0, kl = values.length; k < kl; k ++ ) { const value = values[ k ]; const info = getUniformSize( value ); // Calculate the chunk offset const chunkOffsetUniform = offset % chunkSize; // Check for chunk overflow if ( chunkOffsetUniform !== 0 && ( chunkSize - chunkOffsetUniform ) < info.boundary ) { // Add padding and adjust offset offset += ( chunkSize - chunkOffsetUniform ); } // the following two properties will be used for partial buffer updates uniform.__data = new Float32Array( info.storage / Float32Array.BYTES_PER_ELEMENT ); uniform.__offset = offset; // Update the global offset offset += info.storage; } } } // ensure correct final padding const chunkOffset = offset % chunkSize; if ( chunkOffset > 0 ) offset += ( chunkSize - chunkOffset ); // uniformsGroup.__size = offset; uniformsGroup.__cache = {}; return this; } function getUniformSize( value ) { const info = { boundary: 0, // bytes storage: 0 // bytes }; // determine sizes according to STD140 if ( typeof value === 'number' || typeof value === 'boolean' ) { // float/int/bool info.boundary = 4; info.storage = 4; } else if ( value.isVector2 ) { // vec2 info.boundary = 8; info.storage = 8; } else if ( value.isVector3 || value.isColor ) { // vec3 info.boundary = 16; info.storage = 12; // evil: vec3 must start on a 16-byte boundary but it only consumes 12 bytes } else if ( value.isVector4 ) { // vec4 info.boundary = 16; info.storage = 16; } else if ( value.isMatrix3 ) { // mat3 (in STD140 a 3x3 matrix is represented as 3x4) info.boundary = 48; info.storage = 48; } else if ( value.isMatrix4 ) { // mat4 info.boundary = 64; info.storage = 64; } else if ( value.isTexture ) { console.warn( 'THREE.WebGLRenderer: Texture samplers can not be part of an uniforms group.' ); } else { console.warn( 'THREE.WebGLRenderer: Unsupported uniform value type.', value ); } return info; } function onUniformsGroupsDispose( event ) { const uniformsGroup = event.target; uniformsGroup.removeEventListener( 'dispose', onUniformsGroupsDispose ); const index = allocatedBindingPoints.indexOf( uniformsGroup.__bindingPointIndex ); allocatedBindingPoints.splice( index, 1 ); gl.deleteBuffer( buffers[ uniformsGroup.id ] ); delete buffers[ uniformsGroup.id ]; delete updateList[ uniformsGroup.id ]; } function dispose() { for ( const id in buffers ) { gl.deleteBuffer( buffers[ id ] ); } allocatedBindingPoints = []; buffers = {}; updateList = {}; } return { bind: bind, update: update, dispose: dispose }; } class WebGLRenderer { constructor( parameters = {} ) { const { canvas = createCanvasElement(), context = null, depth = true, stencil = true, alpha = false, antialias = false, premultipliedAlpha = true, preserveDrawingBuffer = false, powerPreference = 'default', failIfMajorPerformanceCaveat = false, } = parameters; this.isWebGLRenderer = true; let _alpha; if ( context !== null ) { _alpha = context.getContextAttributes().alpha; } else { _alpha = alpha; } const uintClearColor = new Uint32Array( 4 ); const intClearColor = new Int32Array( 4 ); let currentRenderList = null; let currentRenderState = null; // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = []; const renderStateStack = []; // public properties this.domElement = canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true, /** * Callback for custom error reporting. * @type {?Function} */ onShaderError: null }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this._outputColorSpace = SRGBColorSpace; // physical lights this._useLegacyLights = false; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // internal properties const _this = this; let _isContextLost = false; // internal state cache let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = - 1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; const _currentClearColor = new Color( 0x000000 ); let _currentClearAlpha = 0; // let _width = canvas.width; let _height = canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4( 0, 0, _width, _height ); const _scissor = new Vector4( 0, 0, _width, _height ); let _scissorTest = false; // frustum const _frustum = new Frustum(); // clipping let _clippingEnabled = false; let _localClippingEnabled = false; // transmission let _transmissionRenderTarget = null; // camera matrices cache const _projScreenMatrix = new Matrix4(); const _vector2 = new Vector2(); const _vector3 = new Vector3(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize let _gl = context; function getContext( contextNames, contextAttributes ) { for ( let i = 0; i < contextNames.length; i ++ ) { const contextName = contextNames[ i ]; const context = canvas.getContext( contextName, contextAttributes ); if ( context !== null ) return context; } return null; } try { const contextAttributes = { alpha: true, depth, stencil, antialias, premultipliedAlpha, preserveDrawingBuffer, powerPreference, failIfMajorPerformanceCaveat, }; // OffscreenCanvas does not have setAttribute, see #22811 if ( 'setAttribute' in canvas ) canvas.setAttribute( 'data-engine', `three.js r${REVISION}` ); // event listeners must be registered before WebGL context is created, see #12753 canvas.addEventListener( 'webglcontextlost', onContextLost, false ); canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); canvas.addEventListener( 'webglcontextcreationerror', onContextCreationError, false ); if ( _gl === null ) { const contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ]; if ( _this.isWebGL1Renderer === true ) { contextNames.shift(); } _gl = getContext( contextNames, contextAttributes ); if ( _gl === null ) { if ( getContext( contextNames ) ) { throw new Error( 'Error creating WebGL context with your selected attributes.' ); } else { throw new Error( 'Error creating WebGL context.' ); } } } if ( typeof WebGLRenderingContext !== 'undefined' && _gl instanceof WebGLRenderingContext ) { // @deprecated, r153 console.warn( 'THREE.WebGLRenderer: WebGL 1 support was deprecated in r153 and will be removed in r163.' ); } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if ( _gl.getShaderPrecisionFormat === undefined ) { _gl.getShaderPrecisionFormat = function () { return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; }; } } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error.message ); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates, uniformsGroups; function initGLContext() { extensions = new WebGLExtensions( _gl ); capabilities = new WebGLCapabilities( _gl, extensions, parameters ); extensions.init( capabilities ); utils = new WebGLUtils( _gl, extensions, capabilities ); state = new WebGLState( _gl, extensions, capabilities ); info = new WebGLInfo( _gl ); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); cubeuvmaps = new WebGLCubeUVMaps( _this ); attributes = new WebGLAttributes( _gl, capabilities ); bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities ); geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); objects = new WebGLObjects( _gl, geometries, attributes, info ); morphtargets = new WebGLMorphtargets( _gl, capabilities, textures ); clipping = new WebGLClipping( properties ); programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ); materials = new WebGLMaterials( _this, properties ); renderLists = new WebGLRenderLists(); renderStates = new WebGLRenderStates( extensions, capabilities ); background = new WebGLBackground( _this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha ); shadowMap = new WebGLShadowMap( _this, objects, capabilities ); uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state ); bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities ); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } initGLContext(); // xr const xr = new WebXRManager( _this, _gl ); this.xr = xr; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext(); }; this.forceContextRestore = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.restoreContext(); }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function ( target ) { return target.set( _width, _height ); }; this.setSize = function ( width, height, updateStyle = true ) { if ( xr.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; canvas.width = Math.floor( width * _pixelRatio ); canvas.height = Math.floor( height * _pixelRatio ); if ( updateStyle === true ) { canvas.style.width = width + 'px'; canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function ( target ) { return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; canvas.width = Math.floor( width * pixelRatio ); canvas.height = Math.floor( height * pixelRatio ); this.setViewport( 0, 0, width, height ); }; this.getCurrentViewport = function ( target ) { return target.copy( _currentViewport ); }; this.getViewport = function ( target ) { return target.copy( _viewport ); }; this.setViewport = function ( x, y, width, height ) { if ( x.isVector4 ) { _viewport.set( x.x, x.y, x.z, x.w ); } else { _viewport.set( x, y, width, height ); } state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).round() ); }; this.getScissor = function ( target ) { return target.copy( _scissor ); }; this.setScissor = function ( x, y, width, height ) { if ( x.isVector4 ) { _scissor.set( x.x, x.y, x.z, x.w ); } else { _scissor.set( x, y, width, height ); } state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).round() ); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; this.setOpaqueSort = function ( method ) { _opaqueSort = method; }; this.setTransparentSort = function ( method ) { _transparentSort = method; }; // Clearing this.getClearColor = function ( target ) { return target.copy( background.getClearColor() ); }; this.setClearColor = function () { background.setClearColor.apply( background, arguments ); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply( background, arguments ); }; this.clear = function ( color = true, depth = true, stencil = true ) { let bits = 0; if ( color ) { // check if we're trying to clear an integer target let isIntegerFormat = false; if ( _currentRenderTarget !== null ) { const targetFormat = _currentRenderTarget.texture.format; isIntegerFormat = targetFormat === RGBAIntegerFormat || targetFormat === RGIntegerFormat || targetFormat === RedIntegerFormat; } // use the appropriate clear functions to clear the target if it's a signed // or unsigned integer target if ( isIntegerFormat ) { const targetType = _currentRenderTarget.texture.type; const isUnsignedType = targetType === UnsignedByteType || targetType === UnsignedIntType || targetType === UnsignedShortType || targetType === UnsignedInt248Type || targetType === UnsignedShort4444Type || targetType === UnsignedShort5551Type; const clearColor = background.getClearColor(); const a = background.getClearAlpha(); const r = clearColor.r; const g = clearColor.g; const b = clearColor.b; if ( isUnsignedType ) { uintClearColor[ 0 ] = r; uintClearColor[ 1 ] = g; uintClearColor[ 2 ] = b; uintClearColor[ 3 ] = a; _gl.clearBufferuiv( _gl.COLOR, 0, uintClearColor ); } else { intClearColor[ 0 ] = r; intClearColor[ 1 ] = g; intClearColor[ 2 ] = b; intClearColor[ 3 ] = a; _gl.clearBufferiv( _gl.COLOR, 0, intClearColor ); } } else { bits |= _gl.COLOR_BUFFER_BIT; } } if ( depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil ) { bits |= _gl.STENCIL_BUFFER_BIT; this.state.buffers.stencil.setMask( 0xffffffff ); } _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; // this.dispose = function () { canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); canvas.removeEventListener( 'webglcontextcreationerror', onContextCreationError, false ); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); cubeuvmaps.dispose(); objects.dispose(); bindingStates.dispose(); uniformsGroups.dispose(); programCache.dispose(); xr.dispose(); xr.removeEventListener( 'sessionstart', onXRSessionStart ); xr.removeEventListener( 'sessionend', onXRSessionEnd ); if ( _transmissionRenderTarget ) { _transmissionRenderTarget.dispose(); _transmissionRenderTarget = null; } animation.stop(); }; // Events function onContextLost( event ) { event.preventDefault(); console.log( 'THREE.WebGLRenderer: Context Lost.' ); _isContextLost = true; } function onContextRestore( /* event */ ) { console.log( 'THREE.WebGLRenderer: Context Restored.' ); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } function onContextCreationError( event ) { console.error( 'THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage ); } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReferences( material ); properties.remove( material ); } function releaseMaterialProgramReferences( material ) { const programs = properties.get( material ).programs; if ( programs !== undefined ) { programs.forEach( function ( program ) { programCache.releaseProgram( program ); } ); if ( material.isShaderMaterial ) { programCache.releaseShaderCache( material ); } } } // Buffer rendering this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); const program = setProgram( camera, scene, geometry, material, object ); state.setMaterial( material, frontFaceCW ); // let index = geometry.index; let rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); if ( index === undefined ) return; rangeFactor = 2; } // const drawRange = geometry.drawRange; const position = geometry.attributes.position; let drawStart = drawRange.start * rangeFactor; let drawEnd = ( drawRange.start + drawRange.count ) * rangeFactor; if ( group !== null ) { drawStart = Math.max( drawStart, group.start * rangeFactor ); drawEnd = Math.min( drawEnd, ( group.start + group.count ) * rangeFactor ); } if ( index !== null ) { drawStart = Math.max( drawStart, 0 ); drawEnd = Math.min( drawEnd, index.count ); } else if ( position !== undefined && position !== null ) { drawStart = Math.max( drawStart, 0 ); drawEnd = Math.min( drawEnd, position.count ); } const drawCount = drawEnd - drawStart; if ( drawCount < 0 || drawCount === Infinity ) return; // bindingStates.setup( object, material, program, geometry, index ); let attribute; let renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { renderer.setMode( _gl.TRIANGLES ); } } else if ( object.isLine ) { let lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( _gl.LINES ); } else if ( object.isLineLoop ) { renderer.setMode( _gl.LINE_LOOP ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object.isPoints ) { renderer.setMode( _gl.POINTS ); } else if ( object.isSprite ) { renderer.setMode( _gl.TRIANGLES ); } if ( object.isBatchedMesh ) { renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount ); } else if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); } else if ( geometry.isInstancedBufferGeometry ) { const maxInstanceCount = geometry._maxInstanceCount !== undefined ? geometry._maxInstanceCount : Infinity; const instanceCount = Math.min( geometry.instanceCount, maxInstanceCount ); renderer.renderInstances( drawStart, drawCount, instanceCount ); } else { renderer.render( drawStart, drawCount ); } }; // Compile function prepareMaterial( material, scene, object ) { if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { material.side = BackSide; material.needsUpdate = true; getProgram( material, scene, object ); material.side = FrontSide; material.needsUpdate = true; getProgram( material, scene, object ); material.side = DoubleSide; } else { getProgram( material, scene, object ); } } this.compile = function ( scene, camera, targetScene = null ) { if ( targetScene === null ) targetScene = scene; currentRenderState = renderStates.get( targetScene ); currentRenderState.init(); renderStateStack.push( currentRenderState ); // gather lights from both the target scene and the new object that will be added to the scene. targetScene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); if ( scene !== targetScene ) { scene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); } currentRenderState.setupLights( _this._useLegacyLights ); // Only initialize materials in the new scene, not the targetScene. const materials = new Set(); scene.traverse( function ( object ) { const material = object.material; if ( material ) { if ( Array.isArray( material ) ) { for ( let i = 0; i < material.length; i ++ ) { const material2 = material[ i ]; prepareMaterial( material2, targetScene, object ); materials.add( material2 ); } } else { prepareMaterial( material, targetScene, object ); materials.add( material ); } } } ); renderStateStack.pop(); currentRenderState = null; return materials; }; // compileAsync this.compileAsync = function ( scene, camera, targetScene = null ) { const materials = this.compile( scene, camera, targetScene ); // Wait for all the materials in the new object to indicate that they're // ready to be used before resolving the promise. return new Promise( ( resolve ) => { function checkMaterialsReady() { materials.forEach( function ( material ) { const materialProperties = properties.get( material ); const program = materialProperties.currentProgram; if ( program.isReady() ) { // remove any programs that report they're ready to use from the list materials.delete( material ); } } ); // once the list of compiling materials is empty, call the callback if ( materials.size === 0 ) { resolve( scene ); return; } // if some materials are still not ready, wait a bit and check again setTimeout( checkMaterialsReady, 10 ); } if ( extensions.get( 'KHR_parallel_shader_compile' ) !== null ) { // If we can check the compilation status of the materials without // blocking then do so right away. checkMaterialsReady(); } else { // Otherwise start by waiting a bit to give the materials we just // initialized a chance to finish. setTimeout( checkMaterialsReady, 10 ); } } ); }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time ) { if ( onAnimationFrameCallback ) onAnimationFrameCallback( time ); } function onXRSessionStart() { animation.stop(); } function onXRSessionEnd() { animation.start(); } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); if ( typeof self !== 'undefined' ) animation.setContext( self ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; xr.setAnimationLoop( callback ); ( callback === null ) ? animation.stop() : animation.start(); }; xr.addEventListener( 'sessionstart', onXRSessionStart ); xr.addEventListener( 'sessionend', onXRSessionEnd ); // Rendering this.render = function ( scene, camera ) { if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( _isContextLost === true ) return; // update scene graph if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); if ( xr.enabled === true && xr.isPresenting === true ) { if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); camera = xr.getCamera(); // use XR camera for rendering } // if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget ); currentRenderState = renderStates.get( scene, renderStateStack.length ); currentRenderState.init(); renderStateStack.push( currentRenderState ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromProjectionMatrix( _projScreenMatrix ); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled ); currentRenderList = renderLists.get( scene, renderListStack.length ); currentRenderList.init(); renderListStack.push( currentRenderList ); projectObject( scene, camera, 0, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort( _opaqueSort, _transparentSort ); } // this.info.render.frame ++; if ( _clippingEnabled === true ) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render( shadowsArray, scene, camera ); if ( _clippingEnabled === true ) clipping.endShadows(); // if ( this.info.autoReset === true ) this.info.reset(); // if ( xr.enabled === false || xr.isPresenting === false || xr.hasDepthSensing() === false ) { background.render( currentRenderList, scene ); } // render scene currentRenderState.setupLights( _this._useLegacyLights ); if ( camera.isArrayCamera ) { const cameras = camera.cameras; for ( let i = 0, l = cameras.length; i < l; i ++ ) { const camera2 = cameras[ i ]; renderScene( currentRenderList, scene, camera2, camera2.viewport ); } } else { renderScene( currentRenderList, scene, camera ); } // if ( _currentRenderTarget !== null ) { // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget( _currentRenderTarget ); // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap( _currentRenderTarget ); } // if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera ); // _gl.finish(); bindingStates.resetDefaultState(); _currentMaterialId = - 1; _currentCamera = null; renderStateStack.pop(); if ( renderStateStack.length > 0 ) { currentRenderState = renderStateStack[ renderStateStack.length - 1 ]; } else { currentRenderState = null; } renderListStack.pop(); if ( renderListStack.length > 0 ) { currentRenderList = renderListStack[ renderListStack.length - 1 ]; } else { currentRenderList = null; } }; function projectObject( object, camera, groupOrder, sortObjects ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isGroup ) { groupOrder = object.renderOrder; } else if ( object.isLOD ) { if ( object.autoUpdate === true ) object.update( camera ); } else if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { if ( sortObjects ) { _vector3.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { const geometry = objects.update( object ); const material = object.material; if ( sortObjects ) { if ( object.boundingSphere !== undefined ) { if ( object.boundingSphere === null ) object.computeBoundingSphere(); _vector3.copy( object.boundingSphere.center ); } else { if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _vector3.copy( geometry.boundingSphere.center ); } _vector3 .applyMatrix4( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector3.z, group ); } } } else if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); } } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, groupOrder, sortObjects ); } } function renderScene( currentRenderList, scene, camera, viewport ) { const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; const transparentObjects = currentRenderList.transparent; currentRenderState.setupLightsView( camera ); if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera ); if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ); if ( viewport ) state.viewport( _currentViewport.copy( viewport ) ); if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera ); if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera ); if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera ); // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); state.setPolygonOffset( false ); } function renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; if ( overrideMaterial !== null ) { return; } const isWebGL2 = capabilities.isWebGL2; if ( _transmissionRenderTarget === null ) { _transmissionRenderTarget = new WebGLRenderTarget( 1, 1, { generateMipmaps: true, type: extensions.has( 'EXT_color_buffer_half_float' ) ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, samples: ( isWebGL2 ) ? 4 : 0 } ); // debug /* const geometry = new PlaneGeometry(); const material = new MeshBasicMaterial( { map: _transmissionRenderTarget.texture } ); const mesh = new Mesh( geometry, material ); scene.add( mesh ); */ } _this.getDrawingBufferSize( _vector2 ); if ( isWebGL2 ) { _transmissionRenderTarget.setSize( _vector2.x, _vector2.y ); } else { _transmissionRenderTarget.setSize( floorPowerOfTwo( _vector2.x ), floorPowerOfTwo( _vector2.y ) ); } // const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget( _transmissionRenderTarget ); _this.getClearColor( _currentClearColor ); _currentClearAlpha = _this.getClearAlpha(); if ( _currentClearAlpha < 1 ) _this.setClearColor( 0xffffff, 0.5 ); _this.clear(); // Turn off the features which can affect the frag color for opaque objects pass. // Otherwise they are applied twice in opaque objects pass and transmission objects pass. const currentToneMapping = _this.toneMapping; _this.toneMapping = NoToneMapping; renderObjects( opaqueObjects, scene, camera ); textures.updateMultisampleRenderTarget( _transmissionRenderTarget ); textures.updateRenderTargetMipmap( _transmissionRenderTarget ); let renderTargetNeedsUpdate = false; for ( let i = 0, l = transmissiveObjects.length; i < l; i ++ ) { const renderItem = transmissiveObjects[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = renderItem.material; const group = renderItem.group; if ( material.side === DoubleSide && object.layers.test( camera.layers ) ) { const currentSide = material.side; material.side = BackSide; material.needsUpdate = true; renderObject( object, scene, camera, geometry, material, group ); material.side = currentSide; material.needsUpdate = true; renderTargetNeedsUpdate = true; } } if ( renderTargetNeedsUpdate === true ) { textures.updateMultisampleRenderTarget( _transmissionRenderTarget ); textures.updateRenderTargetMipmap( _transmissionRenderTarget ); } _this.setRenderTarget( currentRenderTarget ); _this.setClearColor( _currentClearColor, _currentClearAlpha ); _this.toneMapping = currentToneMapping; } function renderObjects( renderList, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for ( let i = 0, l = renderList.length; i < l; i ++ ) { const renderItem = renderList[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if ( object.layers.test( camera.layers ) ) { renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.onBeforeRender( _this, scene, camera, geometry, material, group ); object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); material.onBeforeRender( _this, scene, camera, geometry, object, group ); if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { material.side = BackSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = FrontSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = DoubleSide; } else { _this.renderBufferDirect( camera, scene, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); } function getProgram( material, scene, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); const programCacheKey = programCache.getProgramCacheKey( parameters ); let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment ); materialProperties.envMapRotation = ( materialProperties.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation; if ( programs === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); programs = new Map(); materialProperties.programs = programs; } let program = programs.get( programCacheKey ); if ( program !== undefined ) { // early out if program and light state is identical if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) { updateCommonMaterialProperties( material, parameters ); return program; } } else { parameters.uniforms = programCache.getUniforms( material ); material.onBuild( object, parameters, _this ); material.onBeforeCompile( parameters, _this ); program = programCache.acquireProgram( parameters, programCacheKey ); programs.set( programCacheKey, program ); materialProperties.uniforms = parameters.uniforms; } const uniforms = materialProperties.uniforms; if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties( material, parameters ); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights( material ); materialProperties.lightsStateVersion = lightsStateVersion; if ( materialProperties.needsLights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotLightMatrix.value = lights.state.spotLightMatrix; uniforms.spotLightMap.value = lights.state.spotLightMap; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } materialProperties.currentProgram = program; materialProperties.uniformsList = null; return program; } function getUniformList( materialProperties ) { if ( materialProperties.uniformsList === null ) { const progUniforms = materialProperties.currentProgram.getUniforms(); materialProperties.uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, materialProperties.uniforms ); } return materialProperties.uniformsList; } function updateCommonMaterialProperties( material, parameters ) { const materialProperties = properties.get( material ); materialProperties.outputColorSpace = parameters.outputColorSpace; materialProperties.batching = parameters.batching; materialProperties.instancing = parameters.instancing; materialProperties.instancingColor = parameters.instancingColor; materialProperties.instancingMorph = parameters.instancingMorph; materialProperties.skinning = parameters.skinning; materialProperties.morphTargets = parameters.morphTargets; materialProperties.morphNormals = parameters.morphNormals; materialProperties.morphColors = parameters.morphColors; materialProperties.morphTargetsCount = parameters.morphTargetsCount; materialProperties.numClippingPlanes = parameters.numClippingPlanes; materialProperties.numIntersection = parameters.numClipIntersection; materialProperties.vertexAlphas = parameters.vertexAlphas; materialProperties.vertexTangents = parameters.vertexTangents; materialProperties.toneMapping = parameters.toneMapping; } function setProgram( camera, scene, geometry, material, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const colorSpace = ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ); const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4; const vertexTangents = !! geometry.attributes.tangent && ( !! material.normalMap || material.anisotropy > 0 ); const morphTargets = !! geometry.morphAttributes.position; const morphNormals = !! geometry.morphAttributes.normal; const morphColors = !! geometry.morphAttributes.color; let toneMapping = NoToneMapping; if ( material.toneMapped ) { if ( _currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true ) { toneMapping = _this.toneMapping; } } const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; if ( _clippingEnabled === true ) { if ( _localClippingEnabled === true || camera !== _currentCamera ) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState( material, camera, useCache ); } } // let needsProgramChange = false; if ( material.version === materialProperties.__version ) { if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { needsProgramChange = true; } else if ( materialProperties.outputColorSpace !== colorSpace ) { needsProgramChange = true; } else if ( object.isBatchedMesh && materialProperties.batching === false ) { needsProgramChange = true; } else if ( ! object.isBatchedMesh && materialProperties.batching === true ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancing === false ) { needsProgramChange = true; } else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) { needsProgramChange = true; } else if ( object.isSkinnedMesh && materialProperties.skinning === false ) { needsProgramChange = true; } else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null ) { needsProgramChange = true; } else if ( materialProperties.envMap !== envMap ) { needsProgramChange = true; } else if ( material.fog === true && materialProperties.fog !== fog ) { needsProgramChange = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection ) ) { needsProgramChange = true; } else if ( materialProperties.vertexAlphas !== vertexAlphas ) { needsProgramChange = true; } else if ( materialProperties.vertexTangents !== vertexTangents ) { needsProgramChange = true; } else if ( materialProperties.morphTargets !== morphTargets ) { needsProgramChange = true; } else if ( materialProperties.morphNormals !== morphNormals ) { needsProgramChange = true; } else if ( materialProperties.morphColors !== morphColors ) { needsProgramChange = true; } else if ( materialProperties.toneMapping !== toneMapping ) { needsProgramChange = true; } else if ( capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount ) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } // let program = materialProperties.currentProgram; if ( needsProgramChange === true ) { program = getProgram( material, scene, object ); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if ( state.useProgram( program.program ) ) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || _currentCamera !== camera ) { // common camera uniforms p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); const uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } // consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067 if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); } if ( _currentCamera !== camera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } } // skinning and morph target uniforms must be set even if material didn't change // auto-setting of texture unit for bone and morph texture must go before other textures // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures if ( object.isSkinnedMesh ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); const skeleton = object.skeleton; if ( skeleton ) { if ( capabilities.floatVertexTextures ) { if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture(); p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); } else { console.warn( 'THREE.WebGLRenderer: SkinnedMesh can only be used with WebGL 2. With WebGL 1 OES_texture_float and vertex textures support is required.' ); } } } if ( object.isBatchedMesh ) { p_uniforms.setOptional( _gl, object, 'batchingTexture' ); p_uniforms.setValue( _gl, 'batchingTexture', object._matricesTexture, textures ); } const morphAttributes = geometry.morphAttributes; if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined && capabilities.isWebGL2 === true ) ) { morphtargets.update( object, geometry, program ); } if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); } // https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512 if ( material.isMeshGouraudMaterial && material.envMap !== null ) { m_uniforms.envMap.value = envMap; m_uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? - 1 : 1; } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); if ( materialProperties.needsLights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog === true ) { materials.refreshFogUniforms( m_uniforms, fog ); } materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget ); WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); } if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); material.uniformsNeedUpdate = false; } if ( material.isSpriteMaterial ) { p_uniforms.setValue( _gl, 'center', object.center ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); // UBOs if ( material.isShaderMaterial || material.isRawShaderMaterial ) { const groups = material.uniformsGroups; for ( let i = 0, l = groups.length; i < l; i ++ ) { if ( capabilities.isWebGL2 ) { const group = groups[ i ]; uniformsGroups.update( group, program ); uniformsGroups.bind( group, program ); } else { console.warn( 'THREE.WebGLRenderer: Uniform Buffer Objects can only be used with WebGL 2.' ); } } } return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights( material ) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || ( material.isShaderMaterial && material.lights === true ); } this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTargetTextures = function ( renderTarget, colorTexture, depthTexture ) { properties.get( renderTarget.texture ).__webglTexture = colorTexture; properties.get( renderTarget.depthTexture ).__webglTexture = depthTexture; const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__hasExternalTextures = true; renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined; if ( ! renderTargetProperties.__autoAllocateDepthBuffer ) { // The multisample_render_to_texture extension doesn't work properly if there // are midframe flushes and an external depth buffer. Disable use of the extension. if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true ) { console.warn( 'THREE.WebGLRenderer: Render-to-texture extension was disabled because an external texture was provided' ); renderTargetProperties.__useRenderToTexture = false; } } }; this.setRenderTargetFramebuffer = function ( renderTarget, defaultFramebuffer ) { const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__webglFramebuffer = defaultFramebuffer; renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined; }; this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; let useDefaultFramebuffer = true; let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if ( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); if ( renderTargetProperties.__useDefaultFramebuffer !== undefined ) { // We need to make sure to rebind the framebuffer. state.bindFramebuffer( _gl.FRAMEBUFFER, null ); useDefaultFramebuffer = false; } else if ( renderTargetProperties.__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } else if ( renderTargetProperties.__hasExternalTextures ) { // Color and depth texture must be rebound in order for the swapchain to update. textures.rebindTextures( renderTarget, properties.get( renderTarget.texture ).__webglTexture, properties.get( renderTarget.depthTexture ).__webglTexture ); } const texture = renderTarget.texture; if ( texture.isData3DTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget ) { if ( Array.isArray( __webglFramebuffer[ activeCubeFace ] ) ) { framebuffer = __webglFramebuffer[ activeCubeFace ][ activeMipmapLevel ]; } else { framebuffer = __webglFramebuffer[ activeCubeFace ]; } isCube = true; } else if ( ( capabilities.isWebGL2 && renderTarget.samples > 0 ) && textures.useMultisampledRTT( renderTarget ) === false ) { framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; } else { if ( Array.isArray( __webglFramebuffer ) ) { framebuffer = __webglFramebuffer[ activeMipmapLevel ]; } else { framebuffer = __webglFramebuffer; } } _currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( framebufferBound && capabilities.drawBuffers && useDefaultFramebuffer ) { state.drawBuffers( renderTarget, framebuffer ); } state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); if ( isCube ) { const textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); } else if ( isRenderTarget3D ) { const textureProperties = properties.get( renderTarget.texture ); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer ); } _currentMaterialId = - 1; // reset current material to ensure correct uniform bindings }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } let framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } const halfFloatSupportedByExt = ( textureType === HalfFloatType ) && ( extensions.has( 'EXT_color_buffer_half_float' ) || ( capabilities.isWebGL2 && extensions.has( 'EXT_color_buffer_float' ) ) ); if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // Edge and Chrome Mac < 52 (#9513) ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.has( 'OES_texture_float' ) || extensions.has( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox ! halfFloatSupportedByExt ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); } } finally { // restore framebuffer of current render target if necessary const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); } } }; this.copyFramebufferToTexture = function ( position, texture, level = 0 ) { const levelScale = Math.pow( 2, - level ); const width = Math.floor( texture.image.width * levelScale ); const height = Math.floor( texture.image.height * levelScale ); textures.setTexture2D( texture, 0 ); _gl.copyTexSubImage2D( _gl.TEXTURE_2D, level, 0, 0, position.x, position.y, width, height ); state.unbindTexture(); }; this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level = 0 ) { const width = srcTexture.image.width; const height = srcTexture.image.height; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); textures.setTexture2D( dstTexture, 0 ); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); if ( srcTexture.isDataTexture ) { _gl.texSubImage2D( _gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data ); } else { if ( srcTexture.isCompressedTexture ) { _gl.compressedTexSubImage2D( _gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data ); } else { _gl.texSubImage2D( _gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image ); } } // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.unbindTexture(); }; this.copyTextureToTexture3D = function ( sourceBox, position, srcTexture, dstTexture, level = 0 ) { if ( _this.isWebGL1Renderer ) { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.' ); return; } const width = Math.round( sourceBox.max.x - sourceBox.min.x ); const height = Math.round( sourceBox.max.y - sourceBox.min.y ); const depth = sourceBox.max.z - sourceBox.min.z + 1; const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); let glTarget; if ( dstTexture.isData3DTexture ) { textures.setTexture3D( dstTexture, 0 ); glTarget = _gl.TEXTURE_3D; } else if ( dstTexture.isDataArrayTexture || dstTexture.isCompressedArrayTexture ) { textures.setTexture2DArray( dstTexture, 0 ); glTarget = _gl.TEXTURE_2D_ARRAY; } else { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.' ); return; } _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); const unpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH ); const unpackImageHeight = _gl.getParameter( _gl.UNPACK_IMAGE_HEIGHT ); const unpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS ); const unpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS ); const unpackSkipImages = _gl.getParameter( _gl.UNPACK_SKIP_IMAGES ); const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ level ] : srcTexture.image; _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, image.height ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, sourceBox.min.x ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, sourceBox.min.y ); _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, sourceBox.min.z ); if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data ); } else { if ( dstTexture.isCompressedArrayTexture ) { _gl.compressedTexSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data ); } else { _gl.texSubImage3D( glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image ); } } _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, unpackRowLen ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, unpackSkipPixels ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, unpackSkipRows ); _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, unpackSkipImages ); // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( glTarget ); state.unbindTexture(); }; this.initTexture = function ( texture ) { if ( texture.isCubeTexture ) { textures.setTextureCube( texture, 0 ); } else if ( texture.isData3DTexture ) { textures.setTexture3D( texture, 0 ); } else if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { textures.setTexture2DArray( texture, 0 ); } else { textures.setTexture2D( texture, 0 ); } state.unbindTexture(); }; this.resetState = function () { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } get coordinateSystem() { return WebGLCoordinateSystem; } get outputColorSpace() { return this._outputColorSpace; } set outputColorSpace( colorSpace ) { this._outputColorSpace = colorSpace; const gl = this.getContext(); gl.drawingBufferColorSpace = colorSpace === DisplayP3ColorSpace ? 'display-p3' : 'srgb'; gl.unpackColorSpace = ColorManagement.workingColorSpace === LinearDisplayP3ColorSpace ? 'display-p3' : 'srgb'; } get useLegacyLights() { // @deprecated, r155 console.warn( 'THREE.WebGLRenderer: The property .useLegacyLights has been deprecated. Migrate your lighting according to the following guide: https://discourse.threejs.org/t/updates-to-lighting-in-three-js-r155/53733.' ); return this._useLegacyLights; } set useLegacyLights( value ) { // @deprecated, r155 console.warn( 'THREE.WebGLRenderer: The property .useLegacyLights has been deprecated. Migrate your lighting according to the following guide: https://discourse.threejs.org/t/updates-to-lighting-in-three-js-r155/53733.' ); this._useLegacyLights = value; } } class WebGL1Renderer extends WebGLRenderer {} WebGL1Renderer.prototype.isWebGL1Renderer = true; class Scene extends Object3D { constructor() { super(); this.isScene = true; this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.backgroundBlurriness = 0; this.backgroundIntensity = 1; this.backgroundRotation = new Euler(); this.environmentRotation = new Euler(); this.overrideMaterial = null; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } copy( source, recursive ) { super.copy( source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.environment !== null ) this.environment = source.environment.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); this.backgroundBlurriness = source.backgroundBlurriness; this.backgroundIntensity = source.backgroundIntensity; this.backgroundRotation.copy( source.backgroundRotation ); this.environmentRotation.copy( source.environmentRotation ); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); if ( this.backgroundBlurriness > 0 ) data.object.backgroundBlurriness = this.backgroundBlurriness; if ( this.backgroundIntensity !== 1 ) data.object.backgroundIntensity = this.backgroundIntensity; data.object.backgroundRotation = this.backgroundRotation.toArray(); data.object.environmentRotation = this.environmentRotation.toArray(); return data; } } class LineBasicMaterial extends Material { constructor( parameters ) { super(); this.isLineBasicMaterial = true; this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.fog = source.fog; return this; } } const _start$1 = /*@__PURE__*/ new Vector3(); const _end$1 = /*@__PURE__*/ new Vector3(); const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4(); const _ray$1 = /*@__PURE__*/ new Ray(); const _sphere$1 = /*@__PURE__*/ new Sphere(); class Line extends Object3D { constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) { super(); this.isLine = true; this.type = 'Line'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = [ 0 ]; for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) { _start$1.fromBufferAttribute( positionAttribute, i - 1 ); _end$1.fromBufferAttribute( positionAttribute, i ); lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += _start$1.distanceTo( _end$1 ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$1.copy( geometry.boundingSphere ); _sphere$1.applyMatrix4( matrixWorld ); _sphere$1.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return; // _inverseMatrix$1.copy( matrixWorld ).invert(); _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const vStart = new Vector3(); const vEnd = new Vector3(); const interSegment = new Vector3(); const interRay = new Vector3(); const step = this.isLineSegments ? 2 : 1; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { const a = index.getX( i ); const b = index.getX( i + 1 ); vStart.fromBufferAttribute( positionAttribute, a ); vEnd.fromBufferAttribute( positionAttribute, b ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { vStart.fromBufferAttribute( positionAttribute, i ); vEnd.fromBufferAttribute( positionAttribute, i + 1 ); const distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); if ( distSq > localThresholdSq ) continue; interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( interRay ); if ( distance < raycaster.near || distance > raycaster.far ) continue; intersects.push( { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4( this.matrixWorld ), index: i, face: null, faceIndex: null, object: this } ); } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve'; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); } // Get sequence of points using getPoint( t ) getPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; } // Get list of cumulative segment lengths getLengths( divisions = this.arcLengthDivisions ) { if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint( 0 ); let sum = 0; cache.push( 0 ); for ( let p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping( u, distance ) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[ i ]; const lengthAfter = arcLengths[ i + 1 ]; const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t const t = ( i + segmentFraction ) / ( il - 1 ); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent( t, optionalTarget ) { const delta = 0.0001; let t1 = t - delta; let t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; const pt1 = this.getPoint( t1 ); const pt2 = this.getPoint( t2 ); const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); tangent.copy( pt2 ).sub( pt1 ).normalize(); return tangent; } getTangentAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getTangent( t, optionalTarget ); } computeFrenetFrames( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for ( let i = 0; i <= segments; i ++ ) { const u = i / segments; tangents[ i ] = this.getTangentAt( u, new Vector3() ); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs( tangents[ 0 ].x ); const ty = Math.abs( tangents[ 0 ].y ); const tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( let i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); const theta = Math.acos( clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { let theta = Math.acos( clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( let i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.6, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) { super(); this.isEllipseCurve = true; this.type = 'EllipseCurve'; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos( angle ); let y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { const cos = Math.cos( this.aRotation ); const sin = Math.sin( this.aRotation ); const tx = x - this.aX; const ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set( x, y ); } copy( source ) { super.copy( source ); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON( json ) { super.fromJSON( json ); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } class ArcCurve extends EllipseCurve { constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); this.isArcCurve = true; this.type = 'ArcCurve'; } } /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // const tmp = /*@__PURE__*/ new Vector3(); const px = /*@__PURE__*/ new CubicPoly(); const py = /*@__PURE__*/ new CubicPoly(); const pz = /*@__PURE__*/ new CubicPoly(); class CatmullRomCurve3 extends Curve { constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) { super(); this.isCatmullRomCurve3 = true; this.type = 'CatmullRomCurve3'; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const points = this.points; const l = points.length; const p = ( l - ( this.closed ? 0 : 1 ) ) * t; let intPoint = Math.floor( p ); let weight = p - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } let p0, p3; // 4 points (p1 & p2 defined below) if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } const p1 = points[ intPoint % l ]; const p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25; let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.curveType === 'catmullrom' ) { px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); } point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) ); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } /** * Bezier Curves formulas obtained from * https://en.wikipedia.org/wiki/B%C3%A9zier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { const v0 = ( p2 - p0 ) * 0.5; const v1 = ( p3 - p1 ) * 0.5; const t2 = t * t; const t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { const k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { const k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { const k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } class CubicBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) { super(); this.isCubicBezierCurve = true; this.type = 'CubicBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class CubicBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) { super(); this.isCubicBezierCurve3 = true; this.type = 'CubicBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class LineCurve extends Curve { constructor( v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isLineCurve = true; this.type = 'LineCurve'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget = new Vector2() ) { return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); } getTangentAt( u, optionalTarget ) { return this.getTangent( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class LineCurve3 extends Curve { constructor( v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isLineCurve3 = true; this.type = 'LineCurve3'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget = new Vector3() ) { return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); } getTangentAt( u, optionalTarget ) { return this.getTangent( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isQuadraticBezierCurve = true; this.type = 'QuadraticBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isQuadraticBezierCurve3 = true; this.type = 'QuadraticBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class SplineCurve extends Curve { constructor( points = [] ) { super(); this.isSplineCurve = true; this.type = 'SplineCurve'; this.points = points; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const points = this.points; const p = ( points.length - 1 ) * t; const intPoint = Math.floor( p ); const weight = p - intPoint; const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; const p1 = points[ intPoint ]; const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) ); } return this; } } var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); class CylinderGeometry extends BufferGeometry { constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; const scope = this; radialSegments = Math.floor( radialSegments ); heightSegments = Math.floor( heightSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let index = 0; const indexArray = []; const halfHeight = height / 2; let groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generateTorso() { const normal = new Vector3(); const vertex = new Vector3(); let groupCount = 0; // this will be used to calculate the normal const slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( let y = 0; y <= heightSegments; y ++ ) { const indexRow = []; const v = y / heightSegments; // calculate the radius of the current row const radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const sinTheta = Math.sin( theta ); const cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); // save index of vertex in respective row indexRow.push( index ++ ); } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { for ( let y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices const a = indexArray[ y ][ x ]; const b = indexArray[ y + 1 ][ x ]; const c = indexArray[ y + 1 ][ x + 1 ]; const d = indexArray[ y ][ x + 1 ]; // faces indices.push( a, b, d ); indices.push( b, c, d ); // update group counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { // save the index of the first center vertex const centerIndexStart = index; const uv = new Vector2(); const vertex = new Vector3(); let groupCount = 0; const radius = ( top === true ) ? radiusTop : radiusBottom; const sign = ( top === true ) ? 1 : - 1; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( let x = 1; x <= radialSegments; x ++ ) { // vertex vertices.push( 0, halfHeight * sign, 0 ); // normal normals.push( 0, sign, 0 ); // uv uvs.push( 0.5, 0.5 ); // increase index index ++; } // save the index of the last center vertex const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const cosTheta = Math.cos( theta ); const sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y ); // increase index index ++; } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { const c = centerIndexStart + x; const i = centerIndexEnd + x; if ( top === true ) { // face top indices.push( i, i + 1, c ); } else { // face bottom indices.push( i + 1, i, c ); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class ConeGeometry extends CylinderGeometry { constructor( radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } static fromJSON( data ) { return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class SphereGeometry extends BufferGeometry { constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) { super(); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; widthSegments = Math.max( 3, Math.floor( widthSegments ) ); heightSegments = Math.max( 2, Math.floor( heightSegments ) ); const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); let index = 0; const grid = []; const vertex = new Vector3(); const normal = new Vector3(); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // generate vertices, normals and uvs for ( let iy = 0; iy <= heightSegments; iy ++ ) { const verticesRow = []; const v = iy / heightSegments; // special case for the poles let uOffset = 0; if ( iy === 0 && thetaStart === 0 ) { uOffset = 0.5 / widthSegments; } else if ( iy === heightSegments && thetaEnd === Math.PI ) { uOffset = - 0.5 / widthSegments; } for ( let ix = 0; ix <= widthSegments; ix ++ ) { const u = ix / widthSegments; // vertex vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.copy( vertex ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u + uOffset, 1 - v ); verticesRow.push( index ++ ); } grid.push( verticesRow ); } // indices for ( let iy = 0; iy < heightSegments; iy ++ ) { for ( let ix = 0; ix < widthSegments; ix ++ ) { const a = grid[ iy ][ ix + 1 ]; const b = grid[ iy ][ ix ]; const c = grid[ iy + 1 ][ ix ]; const d = grid[ iy + 1 ][ ix + 1 ]; if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); } } class TubeGeometry extends BufferGeometry { constructor( path = new QuadraticBezierCurve3( new Vector3( - 1, - 1, 0 ), new Vector3( - 1, 1, 0 ), new Vector3( 1, 1, 0 ) ), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) { super(); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; const frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const uv = new Vector2(); let P = new Vector3(); // buffer const vertices = []; const normals = []; const uvs = []; const indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // functions function generateBufferData() { for ( let i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt( i / tubularSegments, P ); // retrieve corresponding normal and binormal const N = frames.normals[ i ]; const B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( let j = 0; j <= radialSegments; j ++ ) { const v = j / radialSegments * Math.PI * 2; const sin = Math.sin( v ); const cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( let i = 0; i <= tubularSegments; i ++ ) { for ( let j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } toJSON() { const data = super.toJSON(); data.path = this.parameters.path.toJSON(); return data; } static fromJSON( data ) { // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. return new TubeGeometry( new Curves[ data.path.type ]().fromJSON( data.path ), data.tubularSegments, data.radius, data.radialSegments, data.closed ); } } class MeshLambertMaterial extends Material { constructor( parameters ) { super(); this.isMeshLambertMaterial = true; this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } const Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; class LoadingManager { constructor( onLoad, onProgress, onError ) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = undefined; const handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; this.resolveURL = function ( url ) { if ( urlModifier ) { return urlModifier( url ); } return url; }; this.setURLModifier = function ( transform ) { urlModifier = transform; return this; }; this.addHandler = function ( regex, loader ) { handlers.push( regex, loader ); return this; }; this.removeHandler = function ( regex ) { const index = handlers.indexOf( regex ); if ( index !== - 1 ) { handlers.splice( index, 2 ); } return this; }; this.getHandler = function ( file ) { for ( let i = 0, l = handlers.length; i < l; i += 2 ) { const regex = handlers[ i ]; const loader = handlers[ i + 1 ]; if ( regex.global ) regex.lastIndex = 0; // see #17920 if ( regex.test( file ) ) { return loader; } } return null; }; } } const DefaultLoadingManager = /*@__PURE__*/ new LoadingManager(); class Loader { constructor( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.withCredentials = false; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } load( /* url, onLoad, onProgress, onError */ ) {} loadAsync( url, onProgress ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.load( url, resolve, onProgress, reject ); } ); } parse( /* data */ ) {} setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } setWithCredentials( value ) { this.withCredentials = value; return this; } setPath( path ) { this.path = path; return this; } setResourcePath( resourcePath ) { this.resourcePath = resourcePath; return this; } setRequestHeader( requestHeader ) { this.requestHeader = requestHeader; return this; } } Loader.DEFAULT_MATERIAL_NAME = '__DEFAULT'; class ImageLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const image = createElementNS( 'img' ); function onImageLoad() { removeEventListeners(); Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); } function onImageError( event ) { removeEventListeners(); if ( onError ) onError( event ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } function removeEventListeners() { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); } image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false ); if ( url.slice( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart( url ); image.src = url; return image; } } class TextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const texture = new Texture(); const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; } } class Light extends Object3D { constructor( color, intensity = 1 ) { super(); this.isLight = true; this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity; } dispose() { // Empty here in base class; some subclasses override. } copy( source, recursive ) { super.copy( source, recursive ); this.color.copy( source.color ); this.intensity = source.intensity; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); return data; } } const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3(); const _lookTarget$1 = /*@__PURE__*/ new Vector3(); class LightShadow { constructor( camera ) { this.camera = camera; this.bias = 0; this.normalBias = 0; this.radius = 1; this.blurSamples = 8; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2( 1, 1 ); this._viewportCount = 1; this._viewports = [ new Vector4( 0, 0, 1, 1 ) ]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices( light ) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld$1 ); _lookTarget$1.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget$1 ); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 ); shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( _projScreenMatrix$1 ); } getViewport( viewportIndex ) { return this._viewports[ viewportIndex ]; } getFrameExtents() { return this._frameExtents; } dispose() { if ( this.map ) { this.map.dispose(); } if ( this.mapPass ) { this.mapPass.dispose(); } } copy( source ) { this.camera = source.camera.clone(); this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; } clone() { return new this.constructor().copy( this ); } toJSON() { const object = {}; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.normalBias !== 0 ) object.normalBias = this.normalBias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } class DirectionalLightShadow extends LightShadow { constructor() { super( new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); this.isDirectionalLightShadow = true; } } class DirectionalLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isDirectionalLight = true; this.type = 'DirectionalLight'; this.position.copy( Object3D.DEFAULT_UP ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } class AmbientLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isAmbientLight = true; this.type = 'AmbientLight'; } } class Clock { constructor( autoStart = true ) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now$3(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { const newTime = now$3(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now$3() { return ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 } const _matrix = /*@__PURE__*/ new Matrix4(); class Raycaster { constructor( origin, direction, near = 0, far = Infinity ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); } setFromCamera( coords, camera ) { if ( camera.isPerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); this.camera = camera; } else if ( camera.isOrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); this.camera = camera; } else { console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type ); } } setFromXRController( controller ) { _matrix.identity().extractRotation( controller.matrixWorld ); this.ray.origin.setFromMatrixPosition( controller.matrixWorld ); this.ray.direction.set( 0, 0, - 1 ).applyMatrix4( _matrix ); return this; } intersectObject( object, recursive = true, intersects = [] ) { intersect( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; } intersectObjects( objects, recursive = true, intersects = [] ) { for ( let i = 0, l = objects.length; i < l; i ++ ) { intersect( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } function ascSort( a, b ) { return a.distance - b.distance; } function intersect( object, raycaster, intersects, recursive ) { if ( object.layers.test( raycaster.layers ) ) { object.raycast( raycaster, intersects ); } if ( recursive === true ) { const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { intersect( children[ i ], raycaster, intersects, true ); } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. * The azimuthal angle (theta) is measured from the positive z-axis. */ class Spherical { constructor( radius = 1, phi = 0, theta = 0 ) { this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; } set( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be between EPS and PI-EPS makeSafe() { const EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + y * y + z * z ); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( x, z ); this.phi = Math.acos( clamp( y / this.radius, - 1, 1 ) ); } return this; } clone() { return new this.constructor().copy( this ); } } if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { revision: REVISION, } } ) ); } if ( typeof window !== 'undefined' ) { if ( window.__THREE__ ) { console.warn( 'WARNING: Multiple instances of Three.js being imported.' ); } else { window.__THREE__ = REVISION; } } const _plane$1 = new Plane(); const _raycaster = new Raycaster(); const _pointer = new Vector2(); const _offset = new Vector3(); const _diff = new Vector2(); const _previousPointer = new Vector2(); const _intersection = new Vector3(); const _worldPosition = new Vector3(); const _inverseMatrix = new Matrix4(); const _up = new Vector3(); const _right = new Vector3(); class DragControls extends EventDispatcher { constructor( _objects, _camera, _domElement ) { super(); _domElement.style.touchAction = 'none'; // disable touch scroll let _selected = null, _hovered = null; const _intersections = []; this.mode = 'translate'; this.rotateSpeed = 1; // const scope = this; function activate() { _domElement.addEventListener( 'pointermove', onPointerMove ); _domElement.addEventListener( 'pointerdown', onPointerDown ); _domElement.addEventListener( 'pointerup', onPointerCancel ); _domElement.addEventListener( 'pointerleave', onPointerCancel ); } function deactivate() { _domElement.removeEventListener( 'pointermove', onPointerMove ); _domElement.removeEventListener( 'pointerdown', onPointerDown ); _domElement.removeEventListener( 'pointerup', onPointerCancel ); _domElement.removeEventListener( 'pointerleave', onPointerCancel ); _domElement.style.cursor = ''; } function dispose() { deactivate(); } function getObjects() { return _objects; } function setObjects( objects ) { _objects = objects; } function getRaycaster() { return _raycaster; } function onPointerMove( event ) { if ( scope.enabled === false ) return; updatePointer( event ); _raycaster.setFromCamera( _pointer, _camera ); if ( _selected ) { if ( scope.mode === 'translate' ) { if ( _raycaster.ray.intersectPlane( _plane$1, _intersection ) ) { _selected.position.copy( _intersection.sub( _offset ).applyMatrix4( _inverseMatrix ) ); } } else if ( scope.mode === 'rotate' ) { _diff.subVectors( _pointer, _previousPointer ).multiplyScalar( scope.rotateSpeed ); _selected.rotateOnWorldAxis( _up, _diff.x ); _selected.rotateOnWorldAxis( _right.normalize(), - _diff.y ); } scope.dispatchEvent( { type: 'drag', object: _selected } ); _previousPointer.copy( _pointer ); } else { // hover support if ( event.pointerType === 'mouse' || event.pointerType === 'pen' ) { _intersections.length = 0; _raycaster.setFromCamera( _pointer, _camera ); _raycaster.intersectObjects( _objects, scope.recursive, _intersections ); if ( _intersections.length > 0 ) { const object = _intersections[ 0 ].object; _plane$1.setFromNormalAndCoplanarPoint( _camera.getWorldDirection( _plane$1.normal ), _worldPosition.setFromMatrixPosition( object.matrixWorld ) ); if ( _hovered !== object && _hovered !== null ) { scope.dispatchEvent( { type: 'hoveroff', object: _hovered } ); _domElement.style.cursor = 'auto'; _hovered = null; } if ( _hovered !== object ) { scope.dispatchEvent( { type: 'hoveron', object: object } ); _domElement.style.cursor = 'pointer'; _hovered = object; } } else { if ( _hovered !== null ) { scope.dispatchEvent( { type: 'hoveroff', object: _hovered } ); _domElement.style.cursor = 'auto'; _hovered = null; } } } } _previousPointer.copy( _pointer ); } function onPointerDown( event ) { if ( scope.enabled === false ) return; updatePointer( event ); _intersections.length = 0; _raycaster.setFromCamera( _pointer, _camera ); _raycaster.intersectObjects( _objects, scope.recursive, _intersections ); if ( _intersections.length > 0 ) { if ( scope.transformGroup === true ) { // look for the outermost group in the object's upper hierarchy _selected = findGroup( _intersections[ 0 ].object ); } else { _selected = _intersections[ 0 ].object; } _plane$1.setFromNormalAndCoplanarPoint( _camera.getWorldDirection( _plane$1.normal ), _worldPosition.setFromMatrixPosition( _selected.matrixWorld ) ); if ( _raycaster.ray.intersectPlane( _plane$1, _intersection ) ) { if ( scope.mode === 'translate' ) { _inverseMatrix.copy( _selected.parent.matrixWorld ).invert(); _offset.copy( _intersection ).sub( _worldPosition.setFromMatrixPosition( _selected.matrixWorld ) ); } else if ( scope.mode === 'rotate' ) { // the controls only support Y+ up _up.set( 0, 1, 0 ).applyQuaternion( _camera.quaternion ).normalize(); _right.set( 1, 0, 0 ).applyQuaternion( _camera.quaternion ).normalize(); } } _domElement.style.cursor = 'move'; scope.dispatchEvent( { type: 'dragstart', object: _selected } ); } _previousPointer.copy( _pointer ); } function onPointerCancel() { if ( scope.enabled === false ) return; if ( _selected ) { scope.dispatchEvent( { type: 'dragend', object: _selected } ); _selected = null; } _domElement.style.cursor = _hovered ? 'pointer' : 'auto'; } function updatePointer( event ) { const rect = _domElement.getBoundingClientRect(); _pointer.x = ( event.clientX - rect.left ) / rect.width * 2 - 1; _pointer.y = - ( event.clientY - rect.top ) / rect.height * 2 + 1; } function findGroup( obj, group = null ) { if ( obj.isGroup ) group = obj; if ( obj.parent === null ) return group; return findGroup( obj.parent, group ); } activate(); // API this.enabled = true; this.recursive = true; this.transformGroup = false; this.activate = activate; this.deactivate = deactivate; this.dispose = dispose; this.getObjects = getObjects; this.getRaycaster = getRaycaster; this.setObjects = setObjects; } } function forceCenter(x, y, z) { var nodes, strength = 1; if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force() { var i, n = nodes.length, node, sx = 0, sy = 0, sz = 0; for (i = 0; i < n; ++i) { node = nodes[i], sx += node.x || 0, sy += node.y || 0, sz += node.z || 0; } for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, sz = (sz / n - z) * strength, i = 0; i < n; ++i) { node = nodes[i]; if (sx) { node.x -= sx; } if (sy) { node.y -= sy; } if (sz) { node.z -= sz; } } } force.initialize = function(_) { nodes = _; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; force.strength = function(_) { return arguments.length ? (strength = +_, force) : strength; }; return force; } function tree_add$2(d) { const x = +this._x.call(null, d); return add$2(this.cover(x), x, d); } function add$2(tree, x, d) { if (isNaN(x)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, x1 = tree._x1, xm, xp, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; } while ((i = +right) === (j = +(xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$2(data) { if (!Array.isArray(data)) data = Array.from(data); const n = data.length; const xz = new Float64Array(n); let x0 = Infinity, x1 = -Infinity; // Compute the points and their extent. for (let i = 0, x; i < n; ++i) { if (isNaN(x = +this._x.call(null, data[i]))) continue; xz[i] = x; if (x < x0) x0 = x; if (x > x1) x1 = x; } // If there were no (valid) points, abort. if (x0 > x1) return this; // Expand the tree to cover the new points. this.cover(x0).cover(x1); // Add the new points. for (let i = 0; i < n; ++i) { add$2(this, xz[i], data[i]); } return this; } function tree_cover$2(x) { if (isNaN(x = +x)) return this; // ignore invalid points var x0 = this._x0, x1 = this._x1; // If the binarytree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing half boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1) { i = +(x < x0); parent = new Array(2), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z; break; case 1: x0 = x1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._x1 = x1; return this; } function tree_data$2() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$2(_) { return arguments.length ? this.cover(+_[0][0]).cover(+_[1][0]) : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]]; } function Half(node, x0, x1) { this.node = node; this.x0 = x0; this.x1 = x1; } function tree_find$2(x, radius) { var data, x0 = this._x0, x1, x2, x3 = this._x1, halves = [], node = this._root, q, i; if (node) halves.push(new Half(node, x0, x3)); if (radius == null) radius = Infinity; else { x0 = x - radius; x3 = x + radius; } while (q = halves.pop()) { // Stop searching if this half can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (x2 = q.x1) < x0) continue; // Bisect the current half. if (node.length) { var xm = (x1 + x2) / 2; halves.push( new Half(node[1], xm, x2), new Half(node[0], x1, xm) ); // Visit the closest half first. if (i = +(x >= xm)) { q = halves[halves.length - 1]; halves[halves.length - 1] = halves[halves.length - 1 - i]; halves[halves.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var d = Math.abs(x - +this._x.call(null, node.data)); if (d < radius) { radius = d; x0 = x - d; x3 = x + d; data = node.data; } } } return data; } function tree_remove$2(d) { if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, x1 = this._x1, x, xm, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (!(parent = node, node = node[i = +right])) return this; if (!node.length) break; if (parent[(i + 1) & 1]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1]) && node === (parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$2(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$2() { return this._root; } function tree_size$2() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$2(callback) { var halves = [], q, node = this._root, child, x0, x1; if (node) halves.push(new Half(node, this._x0, this._x1)); while (q = halves.pop()) { if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) { var xm = (x0 + x1) / 2; if (child = node[1]) halves.push(new Half(child, xm, x1)); if (child = node[0]) halves.push(new Half(child, x0, xm)); } } return this; } function tree_visitAfter$2(callback) { var halves = [], next = [], q; if (this._root) halves.push(new Half(this._root, this._x0, this._x1)); while (q = halves.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2; if (child = node[0]) halves.push(new Half(child, x0, xm)); if (child = node[1]) halves.push(new Half(child, xm, x1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.x1); } return this; } function defaultX$2(d) { return d[0]; } function tree_x$2(_) { return arguments.length ? (this._x = _, this) : this._x; } function binarytree(nodes, x) { var tree = new Binarytree(x == null ? defaultX$2 : x, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Binarytree(x, x0, x1) { this._x = x; this._x0 = x0; this._x1 = x1; this._root = undefined; } function leaf_copy$2(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$2 = binarytree.prototype = Binarytree.prototype; treeProto$2.copy = function() { var copy = new Binarytree(this._x, this._x0, this._x1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$2(node), copy; nodes = [{source: node, target: copy._root = new Array(2)}]; while (node = nodes.pop()) { for (var i = 0; i < 2; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(2)}); else node.target[i] = leaf_copy$2(child); } } } return copy; }; treeProto$2.add = tree_add$2; treeProto$2.addAll = addAll$2; treeProto$2.cover = tree_cover$2; treeProto$2.data = tree_data$2; treeProto$2.extent = tree_extent$2; treeProto$2.find = tree_find$2; treeProto$2.remove = tree_remove$2; treeProto$2.removeAll = removeAll$2; treeProto$2.root = tree_root$2; treeProto$2.size = tree_size$2; treeProto$2.visit = tree_visit$2; treeProto$2.visitAfter = tree_visitAfter$2; treeProto$2.x = tree_x$2; function tree_add$1(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d); return add$1(this.cover(x, y), x, y, d); } function add$1(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$1(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1) return this; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add$1(this, xz[i], yz[i], data[i]); } return this; } function tree_cover$1(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1) { i = (y < y0) << 1 | (x < x0); parent = new Array(4), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z, y1 = y0 + z; break; case 1: x0 = x1 - z, y1 = y0 + z; break; case 2: x1 = x0 + z, y0 = y1 - z; break; case 3: x0 = x1 - z, y0 = y1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; } function tree_data$1() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$1(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; } function Quad(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; } function tree_find$1(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; } function tree_remove$1(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$1(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$1() { return this._root; } function tree_size$1() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$1(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; } function tree_visitAfter$1(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; } function defaultX$1(d) { return d[0]; } function tree_x$1(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY$1(d) { return d[1]; } function tree_y$1(_) { return arguments.length ? (this._y = _, this) : this._y; } function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX$1 : x, y == null ? defaultY$1 : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy$1(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$1 = quadtree.prototype = Quadtree.prototype; treeProto$1.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$1(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy$1(child); } } } return copy; }; treeProto$1.add = tree_add$1; treeProto$1.addAll = addAll$1; treeProto$1.cover = tree_cover$1; treeProto$1.data = tree_data$1; treeProto$1.extent = tree_extent$1; treeProto$1.find = tree_find$1; treeProto$1.remove = tree_remove$1; treeProto$1.removeAll = removeAll$1; treeProto$1.root = tree_root$1; treeProto$1.size = tree_size$1; treeProto$1.visit = tree_visit$1; treeProto$1.visitAfter = tree_visitAfter$1; treeProto$1.x = tree_x$1; treeProto$1.y = tree_y$1; function tree_add(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d), z = +this._z.call(null, d); return add(this.cover(x, y, z), x, y, z, d); } function add(tree, x, y, z, d) { if (isNaN(x) || isNaN(y) || isNaN(z)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, z0 = tree._z0, x1 = tree._x1, y1 = tree._y1, z1 = tree._z1, xm, ym, zm, xp, yp, zp, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (parent = node, !(node = node[i = deep << 2 | bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); zp = +tree._z.call(null, node.data); if (x === xp && y === yp && z === zp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(8) : tree._root = new Array(8); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; } while ((i = deep << 2 | bottom << 1 | right) === (j = (zp >= zm) << 2 | (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { if (!Array.isArray(data)) data = Array.from(data); const n = data.length; const xz = new Float64Array(n); const yz = new Float64Array(n); const zz = new Float64Array(n); let x0 = Infinity, y0 = Infinity, z0 = Infinity, x1 = -Infinity, y1 = -Infinity, z1 = -Infinity; // Compute the points and their extent. for (let i = 0, d, x, y, z; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) continue; xz[i] = x; yz[i] = y; zz[i] = z; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; if (z < z0) z0 = z; if (z > z1) z1 = z; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1 || z0 > z1) return this; // Expand the tree to cover the new points. this.cover(x0, y0, z0).cover(x1, y1, z1); // Add the new points. for (let i = 0; i < n; ++i) { add(this, xz[i], yz[i], zz[i], data[i]); } return this; } function tree_cover(x, y, z) { if (isNaN(x = +x) || isNaN(y = +y) || isNaN(z = +z)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1; // If the octree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing octant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; z1 = (z0 = Math.floor(z)) + 1; } // Otherwise, double repeatedly to cover. else { var t = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1 || z0 > z || z >= z1) { i = (z < z0) << 2 | (y < y0) << 1 | (x < x0); parent = new Array(8), parent[i] = node, node = parent, t *= 2; switch (i) { case 0: x1 = x0 + t, y1 = y0 + t, z1 = z0 + t; break; case 1: x0 = x1 - t, y1 = y0 + t, z1 = z0 + t; break; case 2: x1 = x0 + t, y0 = y1 - t, z1 = z0 + t; break; case 3: x0 = x1 - t, y0 = y1 - t, z1 = z0 + t; break; case 4: x1 = x0 + t, y1 = y0 + t, z0 = z1 - t; break; case 5: x0 = x1 - t, y1 = y0 + t, z0 = z1 - t; break; case 6: x1 = x0 + t, y0 = y1 - t, z0 = z1 - t; break; case 7: x0 = x1 - t, y0 = y1 - t, z0 = z1 - t; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; return this; } function tree_data() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1], +_[0][2]).cover(+_[1][0], +_[1][1], +_[1][2]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0, this._z0], [this._x1, this._y1, this._z1]]; } function Octant(node, x0, y0, z0, x1, y1, z1) { this.node = node; this.x0 = x0; this.y0 = y0; this.z0 = z0; this.x1 = x1; this.y1 = y1; this.z1 = z1; } function tree_find(x, y, z, radius) { var data, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1, y1, z1, x2, y2, z2, x3 = this._x1, y3 = this._y1, z3 = this._z1, octs = [], node = this._root, q, i; if (node) octs.push(new Octant(node, x0, y0, z0, x3, y3, z3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius, z0 = z - radius; x3 = x + radius, y3 = y + radius, z3 = z + radius; radius *= radius; } while (q = octs.pop()) { // Stop searching if this octant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (z1 = q.z0) > z3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0 || (z2 = q.z1) < z0) continue; // Bisect the current octant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2, zm = (z1 + z2) / 2; octs.push( new Octant(node[7], xm, ym, zm, x2, y2, z2), new Octant(node[6], x1, ym, zm, xm, y2, z2), new Octant(node[5], xm, y1, zm, x2, ym, z2), new Octant(node[4], x1, y1, zm, xm, ym, z2), new Octant(node[3], xm, ym, z1, x2, y2, zm), new Octant(node[2], x1, ym, z1, xm, y2, zm), new Octant(node[1], xm, y1, z1, x2, ym, zm), new Octant(node[0], x1, y1, z1, xm, ym, zm) ); // Visit the closest octant first. if (i = (z >= zm) << 2 | (y >= ym) << 1 | (x >= xm)) { q = octs[octs.length - 1]; octs[octs.length - 1] = octs[octs.length - 1 - i]; octs[octs.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), dz = z - +this._z.call(null, node.data), d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d, z0 = z - d; x3 = x + d, y3 = y + d, z3 = z + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1, x, y, z, xm, ym, zm, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (!(parent = node, node = node[i = deep << 2 | bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 7] || parent[(i + 2) & 7] || parent[(i + 3) & 7] || parent[(i + 4) & 7] || parent[(i + 5) & 7] || parent[(i + 6) & 7] || parent[(i + 7) & 7]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3] || parent[4] || parent[5] || parent[6] || parent[7]) && node === (parent[7] || parent[6] || parent[5] || parent[4] || parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit(callback) { var octs = [], q, node = this._root, child, x0, y0, z0, x1, y1, z1; if (node) octs.push(new Octant(node, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); } } return this; } function tree_visitAfter(callback) { var octs = [], next = [], q; if (this._root) octs.push(new Octant(this._root, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.z0, q.x1, q.y1, q.z1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY(d) { return d[1]; } function tree_y(_) { return arguments.length ? (this._y = _, this) : this._y; } function defaultZ(d) { return d[2]; } function tree_z(_) { return arguments.length ? (this._z = _, this) : this._z; } function octree(nodes, x, y, z) { var tree = new Octree(x == null ? defaultX : x, y == null ? defaultY : y, z == null ? defaultZ : z, NaN, NaN, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Octree(x, y, z, x0, y0, z0, x1, y1, z1) { this._x = x; this._y = y; this._z = z; this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = octree.prototype = Octree.prototype; treeProto.copy = function() { var copy = new Octree(this._x, this._y, this._z, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(8)}]; while (node = nodes.pop()) { for (var i = 0; i < 8; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(8)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; treeProto.z = tree_z; function constant(x) { return function() { return x; }; } function jiggle(random) { return (random() - 0.5) * 1e-6; } function index$3(d) { return d.index; } function find(nodeById, nodeId) { var node = nodeById.get(nodeId); if (!node) throw new Error("node not found: " + nodeId); return node; } function forceLink(links) { var id = index$3, strength = defaultStrength, strengths, distance = constant(30), distances, nodes, nDim, count, bias, random, iterations = 1; if (links == null) links = []; function defaultStrength(link) { return 1 / Math.min(count[link.source.index], count[link.target.index]); } function force(alpha) { for (var k = 0, n = links.length; k < iterations; ++k) { for (var i = 0, link, source, target, x = 0, y = 0, z = 0, l, b; i < n; ++i) { link = links[i], source = link.source, target = link.target; x = target.x + target.vx - source.x - source.vx || jiggle(random); if (nDim > 1) { y = target.y + target.vy - source.y - source.vy || jiggle(random); } if (nDim > 2) { z = target.z + target.vz - source.z - source.vz || jiggle(random); } l = Math.sqrt(x * x + y * y + z * z); l = (l - distances[i]) / l * alpha * strengths[i]; x *= l, y *= l, z *= l; target.vx -= x * (b = bias[i]); if (nDim > 1) { target.vy -= y * b; } if (nDim > 2) { target.vz -= z * b; } source.vx += x * (b = 1 - b); if (nDim > 1) { source.vy += y * b; } if (nDim > 2) { source.vz += z * b; } } } } function initialize() { if (!nodes) return; var i, n = nodes.length, m = links.length, nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])), link; for (i = 0, count = new Array(n); i < m; ++i) { link = links[i], link.index = i; if (typeof link.source !== "object") link.source = find(nodeById, link.source); if (typeof link.target !== "object") link.target = find(nodeById, link.target); count[link.source.index] = (count[link.source.index] || 0) + 1; count[link.target.index] = (count[link.target.index] || 0) + 1; } for (i = 0, bias = new Array(m); i < m; ++i) { link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]); } strengths = new Array(m), initializeStrength(); distances = new Array(m), initializeDistance(); } function initializeStrength() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { strengths[i] = +strength(links[i], i, links); } } function initializeDistance() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { distances[i] = +distance(links[i], i, links); } } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.links = function(_) { return arguments.length ? (links = _, initialize(), force) : links; }; force.id = function(_) { return arguments.length ? (id = _, force) : id; }; force.iterations = function(_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initializeStrength(), force) : strength; }; force.distance = function(_) { return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance; }; return force; } var noop$1 = {value: () => {}}; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames(typenames, types) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return {type: t, name: name}; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function(typename, callback) { var _ = this._, T = parseTypenames(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set(_[t], typename.name, callback); else if (callback == null) for (t in _) _[t] = set(_[t], typename.name, null); } return this; }, copy: function() { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function(type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function(type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop$1, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({name: name, value: callback}); return type; } var frame = 0, // is an animation frame pending? timeout = 0, // is a timeout pending? interval = 0, // are any timers active? pokeDelay = 1000, // how frequently we check for clock skew taskHead, taskTail, clockLast = 0, clockNow = 0, clockSkew = 0, clock = typeof performance === "object" && performance.now ? performance : Date, setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); }; function now$2() { return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew); } function clearNow() { clockNow = 0; } function Timer() { this._call = this._time = this._next = null; } Timer.prototype = timer.prototype = { constructor: Timer, restart: function(callback, delay, time) { if (typeof callback !== "function") throw new TypeError("callback is not a function"); time = (time == null ? now$2() : +time) + (delay == null ? 0 : +delay); if (!this._next && taskTail !== this) { if (taskTail) taskTail._next = this; else taskHead = this; taskTail = this; } this._call = callback; this._time = time; sleep(); }, stop: function() { if (this._call) { this._call = null; this._time = Infinity; sleep(); } } }; function timer(callback, delay, time) { var t = new Timer; t.restart(callback, delay, time); return t; } function timerFlush() { now$2(); // Get the current time, if not already set. ++frame; // Pretend we’ve set an alarm, if we haven’t already. var t = taskHead, e; while (t) { if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e); t = t._next; } --frame; } function wake() { clockNow = (clockLast = clock.now()) + clockSkew; frame = timeout = 0; try { timerFlush(); } finally { frame = 0; nap(); clockNow = 0; } } function poke() { var now = clock.now(), delay = now - clockLast; if (delay > pokeDelay) clockSkew -= delay, clockLast = now; } function nap() { var t0, t1 = taskHead, t2, time = Infinity; while (t1) { if (t1._call) { if (time > t1._time) time = t1._time; t0 = t1, t1 = t1._next; } else { t2 = t1._next, t1._next = null; t1 = t0 ? t0._next = t2 : taskHead = t2; } } taskTail = t0; sleep(time); } function sleep(time) { if (frame) return; // Soonest alarm already set, or will be. if (timeout) timeout = clearTimeout(timeout); var delay = time - clockNow; // Strictly less than if we recomputed clockNow. if (delay > 24) { if (time < Infinity) timeout = setTimeout(wake, time - clock.now() - clockSkew); if (interval) interval = clearInterval(interval); } else { if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay); frame = 1, setFrame(wake); } } // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a = 1664525; const c = 1013904223; const m = 4294967296; // 2^32 function lcg() { let s = 1; return () => (s = (a * s + c) % m) / m; } var MAX_DIMENSIONS = 3; function x(d) { return d.x; } function y(d) { return d.y; } function z(d) { return d.z; } var initialRadius = 10, initialAngleRoll = Math.PI * (3 - Math.sqrt(5)), // Golden ratio angle initialAngleYaw = Math.PI * 20 / (9 + Math.sqrt(221)); // Markov irrational number function forceSimulation(nodes, numDimensions) { numDimensions = numDimensions || 2; var nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(numDimensions))), simulation, alpha = 1, alphaMin = 0.001, alphaDecay = 1 - Math.pow(alphaMin, 1 / 300), alphaTarget = 0, velocityDecay = 0.6, forces = new Map(), stepper = timer(step), event = dispatch("tick", "end"), random = lcg(); if (nodes == null) nodes = []; function step() { tick(); event.call("tick", simulation); if (alpha < alphaMin) { stepper.stop(); event.call("end", simulation); } } function tick(iterations) { var i, n = nodes.length, node; if (iterations === undefined) iterations = 1; for (var k = 0; k < iterations; ++k) { alpha += (alphaTarget - alpha) * alphaDecay; forces.forEach(function (force) { force(alpha); }); for (i = 0; i < n; ++i) { node = nodes[i]; if (node.fx == null) node.x += node.vx *= velocityDecay; else node.x = node.fx, node.vx = 0; if (nDim > 1) { if (node.fy == null) node.y += node.vy *= velocityDecay; else node.y = node.fy, node.vy = 0; } if (nDim > 2) { if (node.fz == null) node.z += node.vz *= velocityDecay; else node.z = node.fz, node.vz = 0; } } } return simulation; } function initializeNodes() { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.index = i; if (node.fx != null) node.x = node.fx; if (node.fy != null) node.y = node.fy; if (node.fz != null) node.z = node.fz; if (isNaN(node.x) || (nDim > 1 && isNaN(node.y)) || (nDim > 2 && isNaN(node.z))) { var radius = initialRadius * (nDim > 2 ? Math.cbrt(0.5 + i) : (nDim > 1 ? Math.sqrt(0.5 + i) : i)), rollAngle = i * initialAngleRoll, yawAngle = i * initialAngleYaw; if (nDim === 1) { node.x = radius; } else if (nDim === 2) { node.x = radius * Math.cos(rollAngle); node.y = radius * Math.sin(rollAngle); } else { // 3 dimensions: use spherical distribution along 2 irrational number angles node.x = radius * Math.sin(rollAngle) * Math.cos(yawAngle); node.y = radius * Math.cos(rollAngle); node.z = radius * Math.sin(rollAngle) * Math.sin(yawAngle); } } if (isNaN(node.vx) || (nDim > 1 && isNaN(node.vy)) || (nDim > 2 && isNaN(node.vz))) { node.vx = 0; if (nDim > 1) { node.vy = 0; } if (nDim > 2) { node.vz = 0; } } } } function initializeForce(force) { if (force.initialize) force.initialize(nodes, random, nDim); return force; } initializeNodes(); return simulation = { tick: tick, restart: function() { return stepper.restart(step), simulation; }, stop: function() { return stepper.stop(), simulation; }, numDimensions: function(_) { return arguments.length ? (nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(_))), forces.forEach(initializeForce), simulation) : nDim; }, nodes: function(_) { return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes; }, alpha: function(_) { return arguments.length ? (alpha = +_, simulation) : alpha; }, alphaMin: function(_) { return arguments.length ? (alphaMin = +_, simulation) : alphaMin; }, alphaDecay: function(_) { return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay; }, alphaTarget: function(_) { return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget; }, velocityDecay: function(_) { return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay; }, randomSource: function(_) { return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random; }, force: function(name, _) { return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name); }, find: function() { var args = Array.prototype.slice.call(arguments); var x = args.shift() || 0, y = (nDim > 1 ? args.shift() : null) || 0, z = (nDim > 2 ? args.shift() : null) || 0, radius = args.shift() || Infinity; var i = 0, n = nodes.length, dx, dy, dz, d2, node, closest; radius *= radius; for (i = 0; i < n; ++i) { node = nodes[i]; dx = x - node.x; dy = y - (node.y || 0); dz = z - (node.z ||0); d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) closest = node, radius = d2; } return closest; }, on: function(name, _) { return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name); } }; } function forceManyBody() { var nodes, nDim, node, random, alpha, strength = constant(-30), strengths, distanceMin2 = 1, distanceMax2 = Infinity, theta2 = 0.81; function force(_) { var i, n = nodes.length, tree = (nDim === 1 ? binarytree(nodes, x) :(nDim === 2 ? quadtree(nodes, x, y) :(nDim === 3 ? octree(nodes, x, y, z) :null ))).visitAfter(accumulate); for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply); } function initialize() { if (!nodes) return; var i, n = nodes.length, node; strengths = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes); } function accumulate(treeNode) { var strength = 0, q, c, weight = 0, x, y, z, i; var numChildren = treeNode.length; // For internal nodes, accumulate forces from children. if (numChildren) { for (x = y = z = i = 0; i < numChildren; ++i) { if ((q = treeNode[i]) && (c = Math.abs(q.value))) { strength += q.value, weight += c, x += c * (q.x || 0), y += c * (q.y || 0), z += c * (q.z || 0); } } strength *= Math.sqrt(4 / numChildren); // scale accumulated strength according to number of dimensions treeNode.x = x / weight; if (nDim > 1) { treeNode.y = y / weight; } if (nDim > 2) { treeNode.z = z / weight; } } // For leaf nodes, accumulate forces from coincident nodes. else { q = treeNode; q.x = q.data.x; if (nDim > 1) { q.y = q.data.y; } if (nDim > 2) { q.z = q.data.z; } do strength += strengths[q.data.index]; while (q = q.next); } treeNode.value = strength; } function apply(treeNode, x1, arg1, arg2, arg3) { if (!treeNode.value) return true; var x2 = [arg1, arg2, arg3][nDim-1]; var x = treeNode.x - node.x, y = (nDim > 1 ? treeNode.y - node.y : 0), z = (nDim > 2 ? treeNode.z - node.z : 0), w = x2 - x1, l = x * x + y * y + z * z; // Apply the Barnes-Hut approximation if possible. // Limit forces for very close nodes; randomize direction if coincident. if (w * w / theta2 < l) { if (l < distanceMax2) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); node.vx += x * treeNode.value * alpha / l; if (nDim > 1) { node.vy += y * treeNode.value * alpha / l; } if (nDim > 2) { node.vz += z * treeNode.value * alpha / l; } } return true; } // Otherwise, process points directly. else if (treeNode.length || l >= distanceMax2) return; // Limit forces for very close nodes; randomize direction if coincident. if (treeNode.data !== node || treeNode.next) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); } do if (treeNode.data !== node) { w = strengths[treeNode.data.index] * alpha / l; node.vx += x * w; if (nDim > 1) { node.vy += y * w; } if (nDim > 2) { node.vz += z * w; } } while (treeNode = treeNode.next); } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.distanceMin = function(_) { return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2); }; force.distanceMax = function(_) { return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2); }; force.theta = function(_) { return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2); }; return force; } function forceRadial(radius, x, y, z) { var nodes, nDim, strength = constant(0.1), strengths, radiuses; if (typeof radius !== "function") radius = constant(+radius); if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force(alpha) { for (var i = 0, n = nodes.length; i < n; ++i) { var node = nodes[i], dx = node.x - x || 1e-6, dy = (node.y || 0) - y || 1e-6, dz = (node.z || 0) - z || 1e-6, r = Math.sqrt(dx * dx + dy * dy + dz * dz), k = (radiuses[i] - r) * strengths[i] * alpha / r; node.vx += dx * k; if (nDim>1) { node.vy += dy * k; } if (nDim>2) { node.vz += dz * k; } } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); radiuses = new Array(n); for (i = 0; i < n; ++i) { radiuses[i] = +radius(nodes[i], i, nodes); strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(initNodes, ...args) { nodes = initNodes; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; return force; } function getDefaultExportFromCjs (x) { return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x; } var ngraph_events = function eventify(subject) { validateSubject(subject); var eventsStorage = createEventsStorage(subject); subject.on = eventsStorage.on; subject.off = eventsStorage.off; subject.fire = eventsStorage.fire; return subject; }; function createEventsStorage(subject) { // Store all event listeners to this hash. Key is event name, value is array // of callback records. // // A callback record consists of callback function and its optional context: // { 'eventName' => [{callback: function, ctx: object}] } var registeredEvents = Object.create(null); return { on: function (eventName, callback, ctx) { if (typeof callback !== 'function') { throw new Error('callback is expected to be a function'); } var handlers = registeredEvents[eventName]; if (!handlers) { handlers = registeredEvents[eventName] = []; } handlers.push({callback: callback, ctx: ctx}); return subject; }, off: function (eventName, callback) { var wantToRemoveAll = (typeof eventName === 'undefined'); if (wantToRemoveAll) { // Killing old events storage should be enough in this case: registeredEvents = Object.create(null); return subject; } if (registeredEvents[eventName]) { var deleteAllCallbacksForEvent = (typeof callback !== 'function'); if (deleteAllCallbacksForEvent) { delete registeredEvents[eventName]; } else { var callbacks = registeredEvents[eventName]; for (var i = 0; i < callbacks.length; ++i) { if (callbacks[i].callback === callback) { callbacks.splice(i, 1); } } } } return subject; }, fire: function (eventName) { var callbacks = registeredEvents[eventName]; if (!callbacks) { return subject; } var fireArguments; if (arguments.length > 1) { fireArguments = Array.prototype.splice.call(arguments, 1); } for(var i = 0; i < callbacks.length; ++i) { var callbackInfo = callbacks[i]; callbackInfo.callback.apply(callbackInfo.ctx, fireArguments); } return subject; } }; } function validateSubject(subject) { if (!subject) { throw new Error('Eventify cannot use falsy object as events subject'); } var reservedWords = ['on', 'fire', 'off']; for (var i = 0; i < reservedWords.length; ++i) { if (subject.hasOwnProperty(reservedWords[i])) { throw new Error("Subject cannot be eventified, since it already has property '" + reservedWords[i] + "'"); } } } /** * @fileOverview Contains definition of the core graph object. */ // TODO: need to change storage layer: // 1. Be able to get all nodes O(1) // 2. Be able to get number of links O(1) /** * @example * var graph = require('ngraph.graph')(); * graph.addNode(1); // graph has one node. * graph.addLink(2, 3); // now graph contains three nodes and one link. * */ var ngraph_graph = createGraph; var eventify$1 = ngraph_events; /** * Creates a new graph */ function createGraph(options) { // Graph structure is maintained as dictionary of nodes // and array of links. Each node has 'links' property which // hold all links related to that node. And general links // array is used to speed up all links enumeration. This is inefficient // in terms of memory, but simplifies coding. options = options || {}; if ('uniqueLinkId' in options) { console.warn( 'ngraph.graph: Starting from version 0.14 `uniqueLinkId` is deprecated.\n' + 'Use `multigraph` option instead\n', '\n', 'Note: there is also change in default behavior: From now on each graph\n'+ 'is considered to be not a multigraph by default (each edge is unique).' ); options.multigraph = options.uniqueLinkId; } // Dear reader, the non-multigraphs do not guarantee that there is only // one link for a given pair of node. When this option is set to false // we can save some memory and CPU (18% faster for non-multigraph); if (options.multigraph === undefined) options.multigraph = false; if (typeof Map !== 'function') { // TODO: Should we polyfill it ourselves? We don't use much operations there.. throw new Error('ngraph.graph requires `Map` to be defined. Please polyfill it before using ngraph'); } var nodes = new Map(); // nodeId => Node var links = new Map(); // linkId => Link // Hash of multi-edges. Used to track ids of edges between same nodes var multiEdges = {}; var suspendEvents = 0; var createLink = options.multigraph ? createUniqueLink : createSingleLink, // Our graph API provides means to listen to graph changes. Users can subscribe // to be notified about changes in the graph by using `on` method. However // in some cases they don't use it. To avoid unnecessary memory consumption // we will not record graph changes until we have at least one subscriber. // Code below supports this optimization. // // Accumulates all changes made during graph updates. // Each change element contains: // changeType - one of the strings: 'add', 'remove' or 'update'; // node - if change is related to node this property is set to changed graph's node; // link - if change is related to link this property is set to changed graph's link; changes = [], recordLinkChange = noop, recordNodeChange = noop, enterModification = noop, exitModification = noop; // this is our public API: var graphPart = { /** * Sometimes duck typing could be slow. Giving clients a hint about data structure * via explicit version number here: */ version: 20.0, /** * Adds node to the graph. If node with given id already exists in the graph * its data is extended with whatever comes in 'data' argument. * * @param nodeId the node's identifier. A string or number is preferred. * @param [data] additional data for the node being added. If node already * exists its data object is augmented with the new one. * * @return {node} The newly added node or node with given id if it already exists. */ addNode: addNode, /** * Adds a link to the graph. The function always create a new * link between two nodes. If one of the nodes does not exists * a new node is created. * * @param fromId link start node id; * @param toId link end node id; * @param [data] additional data to be set on the new link; * * @return {link} The newly created link */ addLink: addLink, /** * Removes link from the graph. If link does not exist does nothing. * * @param link - object returned by addLink() or getLinks() methods. * * @returns true if link was removed; false otherwise. */ removeLink: removeLink, /** * Removes node with given id from the graph. If node does not exist in the graph * does nothing. * * @param nodeId node's identifier passed to addNode() function. * * @returns true if node was removed; false otherwise. */ removeNode: removeNode, /** * Gets node with given identifier. If node does not exist undefined value is returned. * * @param nodeId requested node identifier; * * @return {node} in with requested identifier or undefined if no such node exists. */ getNode: getNode, /** * Gets number of nodes in this graph. * * @return number of nodes in the graph. */ getNodeCount: getNodeCount, /** * Gets total number of links in the graph. */ getLinkCount: getLinkCount, /** * Gets total number of links in the graph. */ getEdgeCount: getLinkCount, /** * Synonym for `getLinkCount()` */ getLinksCount: getLinkCount, /** * Synonym for `getNodeCount()` */ getNodesCount: getNodeCount, /** * Gets all links (inbound and outbound) from the node with given id. * If node with given id is not found null is returned. * * @param nodeId requested node identifier. * * @return Set of links from and to requested node if such node exists; * otherwise null is returned. */ getLinks: getLinks, /** * Invokes callback on each node of the graph. * * @param {Function(node)} callback Function to be invoked. The function * is passed one argument: visited node. */ forEachNode: forEachNode, /** * Invokes callback on every linked (adjacent) node to the given one. * * @param nodeId Identifier of the requested node. * @param {Function(node, link)} callback Function to be called on all linked nodes. * The function is passed two parameters: adjacent node and link object itself. * @param oriented if true graph treated as oriented. */ forEachLinkedNode: forEachLinkedNode, /** * Enumerates all links in the graph * * @param {Function(link)} callback Function to be called on all links in the graph. * The function is passed one parameter: graph's link object. * * Link object contains at least the following fields: * fromId - node id where link starts; * toId - node id where link ends, * data - additional data passed to graph.addLink() method. */ forEachLink: forEachLink, /** * Suspend all notifications about graph changes until * endUpdate is called. */ beginUpdate: enterModification, /** * Resumes all notifications about graph changes and fires * graph 'changed' event in case there are any pending changes. */ endUpdate: exitModification, /** * Removes all nodes and links from the graph. */ clear: clear, /** * Detects whether there is a link between two nodes. * Operation complexity is O(n) where n - number of links of a node. * NOTE: this function is synonym for getLink() * * @returns link if there is one. null otherwise. */ hasLink: getLink, /** * Detects whether there is a node with given id * * Operation complexity is O(1) * NOTE: this function is synonym for getNode() * * @returns node if there is one; Falsy value otherwise. */ hasNode: getNode, /** * Gets an edge between two nodes. * Operation complexity is O(n) where n - number of links of a node. * * @param {string} fromId link start identifier * @param {string} toId link end identifier * * @returns link if there is one; undefined otherwise. */ getLink: getLink }; // this will add `on()` and `fire()` methods. eventify$1(graphPart); monitorSubscribers(); return graphPart; function monitorSubscribers() { var realOn = graphPart.on; // replace real `on` with our temporary on, which will trigger change // modification monitoring: graphPart.on = on; function on() { // now it's time to start tracking stuff: graphPart.beginUpdate = enterModification = enterModificationReal; graphPart.endUpdate = exitModification = exitModificationReal; recordLinkChange = recordLinkChangeReal; recordNodeChange = recordNodeChangeReal; // this will replace current `on` method with real pub/sub from `eventify`. graphPart.on = realOn; // delegate to real `on` handler: return realOn.apply(graphPart, arguments); } } function recordLinkChangeReal(link, changeType) { changes.push({ link: link, changeType: changeType }); } function recordNodeChangeReal(node, changeType) { changes.push({ node: node, changeType: changeType }); } function addNode(nodeId, data) { if (nodeId === undefined) { throw new Error('Invalid node identifier'); } enterModification(); var node = getNode(nodeId); if (!node) { node = new Node(nodeId, data); recordNodeChange(node, 'add'); } else { node.data = data; recordNodeChange(node, 'update'); } nodes.set(nodeId, node); exitModification(); return node; } function getNode(nodeId) { return nodes.get(nodeId); } function removeNode(nodeId) { var node = getNode(nodeId); if (!node) { return false; } enterModification(); var prevLinks = node.links; if (prevLinks) { prevLinks.forEach(removeLinkInstance); node.links = null; } nodes.delete(nodeId); recordNodeChange(node, 'remove'); exitModification(); return true; } function addLink(fromId, toId, data) { enterModification(); var fromNode = getNode(fromId) || addNode(fromId); var toNode = getNode(toId) || addNode(toId); var link = createLink(fromId, toId, data); var isUpdate = links.has(link.id); links.set(link.id, link); // TODO: this is not cool. On large graphs potentially would consume more memory. addLinkToNode(fromNode, link); if (fromId !== toId) { // make sure we are not duplicating links for self-loops addLinkToNode(toNode, link); } recordLinkChange(link, isUpdate ? 'update' : 'add'); exitModification(); return link; } function createSingleLink(fromId, toId, data) { var linkId = makeLinkId(fromId, toId); var prevLink = links.get(linkId); if (prevLink) { prevLink.data = data; return prevLink; } return new Link(fromId, toId, data, linkId); } function createUniqueLink(fromId, toId, data) { // TODO: Find a better/faster way to store multigraphs var linkId = makeLinkId(fromId, toId); var isMultiEdge = multiEdges.hasOwnProperty(linkId); if (isMultiEdge || getLink(fromId, toId)) { if (!isMultiEdge) { multiEdges[linkId] = 0; } var suffix = '@' + (++multiEdges[linkId]); linkId = makeLinkId(fromId + suffix, toId + suffix); } return new Link(fromId, toId, data, linkId); } function getNodeCount() { return nodes.size; } function getLinkCount() { return links.size; } function getLinks(nodeId) { var node = getNode(nodeId); return node ? node.links : null; } function removeLink(link, otherId) { if (otherId !== undefined) { link = getLink(link, otherId); } return removeLinkInstance(link); } function removeLinkInstance(link) { if (!link) { return false; } if (!links.get(link.id)) return false; enterModification(); links.delete(link.id); var fromNode = getNode(link.fromId); var toNode = getNode(link.toId); if (fromNode) { fromNode.links.delete(link); } if (toNode) { toNode.links.delete(link); } recordLinkChange(link, 'remove'); exitModification(); return true; } function getLink(fromNodeId, toNodeId) { if (fromNodeId === undefined || toNodeId === undefined) return undefined; return links.get(makeLinkId(fromNodeId, toNodeId)); } function clear() { enterModification(); forEachNode(function(node) { removeNode(node.id); }); exitModification(); } function forEachLink(callback) { if (typeof callback === 'function') { var valuesIterator = links.values(); var nextValue = valuesIterator.next(); while (!nextValue.done) { if (callback(nextValue.value)) { return true; // client doesn't want to proceed. Return. } nextValue = valuesIterator.next(); } } } function forEachLinkedNode(nodeId, callback, oriented) { var node = getNode(nodeId); if (node && node.links && typeof callback === 'function') { if (oriented) { return forEachOrientedLink(node.links, nodeId, callback); } else { return forEachNonOrientedLink(node.links, nodeId, callback); } } } // eslint-disable-next-line no-shadow function forEachNonOrientedLink(links, nodeId, callback) { var quitFast; var valuesIterator = links.values(); var nextValue = valuesIterator.next(); while (!nextValue.done) { var link = nextValue.value; var linkedNodeId = link.fromId === nodeId ? link.toId : link.fromId; quitFast = callback(nodes.get(linkedNodeId), link); if (quitFast) { return true; // Client does not need more iterations. Break now. } nextValue = valuesIterator.next(); } } // eslint-disable-next-line no-shadow function forEachOrientedLink(links, nodeId, callback) { var quitFast; var valuesIterator = links.values(); var nextValue = valuesIterator.next(); while (!nextValue.done) { var link = nextValue.value; if (link.fromId === nodeId) { quitFast = callback(nodes.get(link.toId), link); if (quitFast) { return true; // Client does not need more iterations. Break now. } } nextValue = valuesIterator.next(); } } // we will not fire anything until users of this library explicitly call `on()` // method. function noop() {} // Enter, Exit modification allows bulk graph updates without firing events. function enterModificationReal() { suspendEvents += 1; } function exitModificationReal() { suspendEvents -= 1; if (suspendEvents === 0 && changes.length > 0) { graphPart.fire('changed', changes); changes.length = 0; } } function forEachNode(callback) { if (typeof callback !== 'function') { throw new Error('Function is expected to iterate over graph nodes. You passed ' + callback); } var valuesIterator = nodes.values(); var nextValue = valuesIterator.next(); while (!nextValue.done) { if (callback(nextValue.value)) { return true; // client doesn't want to proceed. Return. } nextValue = valuesIterator.next(); } } } /** * Internal structure to represent node; */ function Node(id, data) { this.id = id; this.links = null; this.data = data; } function addLinkToNode(node, link) { if (node.links) { node.links.add(link); } else { node.links = new Set([link]); } } /** * Internal structure to represent links; */ function Link(fromId, toId, data, id) { this.fromId = fromId; this.toId = toId; this.data = data; this.id = id; } function makeLinkId(fromId, toId) { return fromId.toString() + '👉 ' + toId.toString(); } var graph = /*@__PURE__*/getDefaultExportFromCjs(ngraph_graph); var ngraph_forcelayout = {exports: {}}; var generateCreateBody = {exports: {}}; var getVariableName$2 = function getVariableName(index) { if (index === 0) return 'x'; if (index === 1) return 'y'; if (index === 2) return 'z'; return 'c' + (index + 1); }; const getVariableName$1 = getVariableName$2; var createPatternBuilder$6 = function createPatternBuilder(dimension) { return pattern; function pattern(template, config) { let indent = (config && config.indent) || 0; let join = (config && config.join !== undefined) ? config.join : '\n'; let indentString = Array(indent + 1).join(' '); let buffer = []; for (let i = 0; i < dimension; ++i) { let variableName = getVariableName$1(i); let prefix = (i === 0) ? '' : indentString; buffer.push(prefix + template.replace(/{var}/g, variableName)); } return buffer.join(join); } }; const createPatternBuilder$5 = createPatternBuilder$6; generateCreateBody.exports = generateCreateBodyFunction$1; generateCreateBody.exports.generateCreateBodyFunctionBody = generateCreateBodyFunctionBody; // InlineTransform: getVectorCode generateCreateBody.exports.getVectorCode = getVectorCode; // InlineTransform: getBodyCode generateCreateBody.exports.getBodyCode = getBodyCode; // InlineTransformExport: module.exports = function() { return Body; } function generateCreateBodyFunction$1(dimension, debugSetters) { let code = generateCreateBodyFunctionBody(dimension, debugSetters); let {Body} = (new Function(code))(); return Body; } function generateCreateBodyFunctionBody(dimension, debugSetters) { let code = ` ${getVectorCode(dimension, debugSetters)} ${getBodyCode(dimension)} return {Body: Body, Vector: Vector}; `; return code; } function getBodyCode(dimension) { let pattern = createPatternBuilder$5(dimension); let variableList = pattern('{var}', {join: ', '}); return ` function Body(${variableList}) { this.isPinned = false; this.pos = new Vector(${variableList}); this.force = new Vector(); this.velocity = new Vector(); this.mass = 1; this.springCount = 0; this.springLength = 0; } Body.prototype.reset = function() { this.force.reset(); this.springCount = 0; this.springLength = 0; } Body.prototype.setPosition = function (${variableList}) { ${pattern('this.pos.{var} = {var} || 0;', {indent: 2})} };`; } function getVectorCode(dimension, debugSetters) { let pattern = createPatternBuilder$5(dimension); let setters = ''; if (debugSetters) { setters = `${pattern("\n\ var v{var};\n\ Object.defineProperty(this, '{var}', {\n\ set: function(v) { \n\ if (!Number.isFinite(v)) throw new Error('Cannot set non-numbers to {var}');\n\ v{var} = v; \n\ },\n\ get: function() { return v{var}; }\n\ });")}`; } let variableList = pattern('{var}', {join: ', '}); return `function Vector(${variableList}) { ${setters} if (typeof arguments[0] === 'object') { // could be another vector let v = arguments[0]; ${pattern('if (!Number.isFinite(v.{var})) throw new Error("Expected value is not a finite number at Vector constructor ({var})");', {indent: 4})} ${pattern('this.{var} = v.{var};', {indent: 4})} } else { ${pattern('this.{var} = typeof {var} === "number" ? {var} : 0;', {indent: 4})} } } Vector.prototype.reset = function () { ${pattern('this.{var} = ', {join: ''})}0; };`; } var generateCreateBodyExports = generateCreateBody.exports; var generateQuadTree = {exports: {}}; const createPatternBuilder$4 = createPatternBuilder$6; const getVariableName = getVariableName$2; generateQuadTree.exports = generateQuadTreeFunction$1; generateQuadTree.exports.generateQuadTreeFunctionBody = generateQuadTreeFunctionBody; // These exports are for InlineTransform tool. // InlineTransform: getInsertStackCode generateQuadTree.exports.getInsertStackCode = getInsertStackCode; // InlineTransform: getQuadNodeCode generateQuadTree.exports.getQuadNodeCode = getQuadNodeCode; // InlineTransform: isSamePosition generateQuadTree.exports.isSamePosition = isSamePosition; // InlineTransform: getChildBodyCode generateQuadTree.exports.getChildBodyCode = getChildBodyCode; // InlineTransform: setChildBodyCode generateQuadTree.exports.setChildBodyCode = setChildBodyCode; function generateQuadTreeFunction$1(dimension) { let code = generateQuadTreeFunctionBody(dimension); return (new Function(code))(); } function generateQuadTreeFunctionBody(dimension) { let pattern = createPatternBuilder$4(dimension); let quadCount = Math.pow(2, dimension); let code = ` ${getInsertStackCode()} ${getQuadNodeCode(dimension)} ${isSamePosition(dimension)} ${getChildBodyCode(dimension)} ${setChildBodyCode(dimension)} function createQuadTree(options, random) { options = options || {}; options.gravity = typeof options.gravity === 'number' ? options.gravity : -1; options.theta = typeof options.theta === 'number' ? options.theta : 0.8; var gravity = options.gravity; var updateQueue = []; var insertStack = new InsertStack(); var theta = options.theta; var nodesCache = []; var currentInCache = 0; var root = newNode(); return { insertBodies: insertBodies, /** * Gets root node if it is present */ getRoot: function() { return root; }, updateBodyForce: update, options: function(newOptions) { if (newOptions) { if (typeof newOptions.gravity === 'number') { gravity = newOptions.gravity; } if (typeof newOptions.theta === 'number') { theta = newOptions.theta; } return this; } return { gravity: gravity, theta: theta }; } }; function newNode() { // To avoid pressure on GC we reuse nodes. var node = nodesCache[currentInCache]; if (node) { ${assignQuads(' node.')} node.body = null; node.mass = ${pattern('node.mass_{var} = ', {join: ''})}0; ${pattern('node.min_{var} = node.max_{var} = ', {join: ''})}0; } else { node = new QuadNode(); nodesCache[currentInCache] = node; } ++currentInCache; return node; } function update(sourceBody) { var queue = updateQueue; var v; ${pattern('var d{var};', {indent: 4})} var r; ${pattern('var f{var} = 0;', {indent: 4})} var queueLength = 1; var shiftIdx = 0; var pushIdx = 1; queue[0] = root; while (queueLength) { var node = queue[shiftIdx]; var body = node.body; queueLength -= 1; shiftIdx += 1; var differentBody = (body !== sourceBody); if (body && differentBody) { // If the current node is a leaf node (and it is not source body), // calculate the force exerted by the current node on body, and add this // amount to body's net force. ${pattern('d{var} = body.pos.{var} - sourceBody.pos.{var};', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { // Poor man's protection against zero distance. ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 10})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } // This is standard gravitation force calculation but we divide // by r^3 to save two operations when normalizing force vector. v = gravity * body.mass * sourceBody.mass / (r * r * r); ${pattern('f{var} += v * d{var};', {indent: 8})} } else if (differentBody) { // Otherwise, calculate the ratio s / r, where s is the width of the region // represented by the internal node, and r is the distance between the body // and the node's center-of-mass ${pattern('d{var} = node.mass_{var} / node.mass - sourceBody.pos.{var};', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { // Sorry about code duplication. I don't want to create many functions // right away. Just want to see performance first. ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 10})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } // If s / r < θ, treat this internal node as a single body, and calculate the // force it exerts on sourceBody, and add this amount to sourceBody's net force. if ((node.max_${getVariableName(0)} - node.min_${getVariableName(0)}) / r < theta) { // in the if statement above we consider node's width only // because the region was made into square during tree creation. // Thus there is no difference between using width or height. v = gravity * node.mass * sourceBody.mass / (r * r * r); ${pattern('f{var} += v * d{var};', {indent: 10})} } else { // Otherwise, run the procedure recursively on each of the current node's children. // I intentionally unfolded this loop, to save several CPU cycles. ${runRecursiveOnChildren()} } } } ${pattern('sourceBody.force.{var} += f{var};', {indent: 4})} } function insertBodies(bodies) { ${pattern('var {var}min = Number.MAX_VALUE;', {indent: 4})} ${pattern('var {var}max = Number.MIN_VALUE;', {indent: 4})} var i = bodies.length; // To reduce quad tree depth we are looking for exact bounding box of all particles. while (i--) { var pos = bodies[i].pos; ${pattern('if (pos.{var} < {var}min) {var}min = pos.{var};', {indent: 6})} ${pattern('if (pos.{var} > {var}max) {var}max = pos.{var};', {indent: 6})} } // Makes the bounds square. var maxSideLength = -Infinity; ${pattern('if ({var}max - {var}min > maxSideLength) maxSideLength = {var}max - {var}min ;', {indent: 4})} currentInCache = 0; root = newNode(); ${pattern('root.min_{var} = {var}min;', {indent: 4})} ${pattern('root.max_{var} = {var}min + maxSideLength;', {indent: 4})} i = bodies.length - 1; if (i >= 0) { root.body = bodies[i]; } while (i--) { insert(bodies[i], root); } } function insert(newBody) { insertStack.reset(); insertStack.push(root, newBody); while (!insertStack.isEmpty()) { var stackItem = insertStack.pop(); var node = stackItem.node; var body = stackItem.body; if (!node.body) { // This is internal node. Update the total mass of the node and center-of-mass. ${pattern('var {var} = body.pos.{var};', {indent: 8})} node.mass += body.mass; ${pattern('node.mass_{var} += body.mass * {var};', {indent: 8})} // Recursively insert the body in the appropriate quadrant. // But first find the appropriate quadrant. var quadIdx = 0; // Assume we are in the 0's quad. ${pattern('var min_{var} = node.min_{var};', {indent: 8})} ${pattern('var max_{var} = (min_{var} + node.max_{var}) / 2;', {indent: 8})} ${assignInsertionQuadIndex(8)} var child = getChild(node, quadIdx); if (!child) { // The node is internal but this quadrant is not taken. Add // subnode to it. child = newNode(); ${pattern('child.min_{var} = min_{var};', {indent: 10})} ${pattern('child.max_{var} = max_{var};', {indent: 10})} child.body = body; setChild(node, quadIdx, child); } else { // continue searching in this quadrant. insertStack.push(child, body); } } else { // We are trying to add to the leaf node. // We have to convert current leaf into internal node // and continue adding two nodes. var oldBody = node.body; node.body = null; // internal nodes do not cary bodies if (isSamePosition(oldBody.pos, body.pos)) { // Prevent infinite subdivision by bumping one node // anywhere in this quadrant var retriesCount = 3; do { var offset = random.nextDouble(); ${pattern('var d{var} = (node.max_{var} - node.min_{var}) * offset;', {indent: 12})} ${pattern('oldBody.pos.{var} = node.min_{var} + d{var};', {indent: 12})} retriesCount -= 1; // Make sure we don't bump it out of the box. If we do, next iteration should fix it } while (retriesCount > 0 && isSamePosition(oldBody.pos, body.pos)); if (retriesCount === 0 && isSamePosition(oldBody.pos, body.pos)) { // This is very bad, we ran out of precision. // if we do not return from the method we'll get into // infinite loop here. So we sacrifice correctness of layout, and keep the app running // Next layout iteration should get larger bounding box in the first step and fix this return; } } // Next iteration should subdivide node further. insertStack.push(node, oldBody); insertStack.push(node, body); } } } } return createQuadTree; `; return code; function assignInsertionQuadIndex(indentCount) { let insertionCode = []; let indent = Array(indentCount + 1).join(' '); for (let i = 0; i < dimension; ++i) { insertionCode.push(indent + `if (${getVariableName(i)} > max_${getVariableName(i)}) {`); insertionCode.push(indent + ` quadIdx = quadIdx + ${Math.pow(2, i)};`); insertionCode.push(indent + ` min_${getVariableName(i)} = max_${getVariableName(i)};`); insertionCode.push(indent + ` max_${getVariableName(i)} = node.max_${getVariableName(i)};`); insertionCode.push(indent + `}`); } return insertionCode.join('\n'); // if (x > max_x) { // somewhere in the eastern part. // quadIdx = quadIdx + 1; // left = right; // right = node.right; // } } function runRecursiveOnChildren() { let indent = Array(11).join(' '); let recursiveCode = []; for (let i = 0; i < quadCount; ++i) { recursiveCode.push(indent + `if (node.quad${i}) {`); recursiveCode.push(indent + ` queue[pushIdx] = node.quad${i};`); recursiveCode.push(indent + ` queueLength += 1;`); recursiveCode.push(indent + ` pushIdx += 1;`); recursiveCode.push(indent + `}`); } return recursiveCode.join('\n'); // if (node.quad0) { // queue[pushIdx] = node.quad0; // queueLength += 1; // pushIdx += 1; // } } function assignQuads(indent) { // this.quad0 = null; // this.quad1 = null; // this.quad2 = null; // this.quad3 = null; let quads = []; for (let i = 0; i < quadCount; ++i) { quads.push(`${indent}quad${i} = null;`); } return quads.join('\n'); } } function isSamePosition(dimension) { let pattern = createPatternBuilder$4(dimension); return ` function isSamePosition(point1, point2) { ${pattern('var d{var} = Math.abs(point1.{var} - point2.{var});', {indent: 2})} return ${pattern('d{var} < 1e-8', {join: ' && '})}; } `; } function setChildBodyCode(dimension) { var quadCount = Math.pow(2, dimension); return ` function setChild(node, idx, child) { ${setChildBody()} }`; function setChildBody() { let childBody = []; for (let i = 0; i < quadCount; ++i) { let prefix = (i === 0) ? ' ' : ' else '; childBody.push(`${prefix}if (idx === ${i}) node.quad${i} = child;`); } return childBody.join('\n'); // if (idx === 0) node.quad0 = child; // else if (idx === 1) node.quad1 = child; // else if (idx === 2) node.quad2 = child; // else if (idx === 3) node.quad3 = child; } } function getChildBodyCode(dimension) { return `function getChild(node, idx) { ${getChildBody()} return null; }`; function getChildBody() { let childBody = []; let quadCount = Math.pow(2, dimension); for (let i = 0; i < quadCount; ++i) { childBody.push(` if (idx === ${i}) return node.quad${i};`); } return childBody.join('\n'); // if (idx === 0) return node.quad0; // if (idx === 1) return node.quad1; // if (idx === 2) return node.quad2; // if (idx === 3) return node.quad3; } } function getQuadNodeCode(dimension) { let pattern = createPatternBuilder$4(dimension); let quadCount = Math.pow(2, dimension); var quadNodeCode = ` function QuadNode() { // body stored inside this node. In quad tree only leaf nodes (by construction) // contain bodies: this.body = null; // Child nodes are stored in quads. Each quad is presented by number: // 0 | 1 // ----- // 2 | 3 ${assignQuads(' this.')} // Total mass of current node this.mass = 0; // Center of mass coordinates ${pattern('this.mass_{var} = 0;', {indent: 2})} // bounding box coordinates ${pattern('this.min_{var} = 0;', {indent: 2})} ${pattern('this.max_{var} = 0;', {indent: 2})} } `; return quadNodeCode; function assignQuads(indent) { // this.quad0 = null; // this.quad1 = null; // this.quad2 = null; // this.quad3 = null; let quads = []; for (let i = 0; i < quadCount; ++i) { quads.push(`${indent}quad${i} = null;`); } return quads.join('\n'); } } function getInsertStackCode() { return ` /** * Our implementation of QuadTree is non-recursive to avoid GC hit * This data structure represent stack of elements * which we are trying to insert into quad tree. */ function InsertStack () { this.stack = []; this.popIdx = 0; } InsertStack.prototype = { isEmpty: function() { return this.popIdx === 0; }, push: function (node, body) { var item = this.stack[this.popIdx]; if (!item) { // we are trying to avoid memory pressure: create new element // only when absolutely necessary this.stack[this.popIdx] = new InsertStackElement(node, body); } else { item.node = node; item.body = body; } ++this.popIdx; }, pop: function () { if (this.popIdx > 0) { return this.stack[--this.popIdx]; } }, reset: function () { this.popIdx = 0; } }; function InsertStackElement(node, body) { this.node = node; // QuadTree node this.body = body; // physical body which needs to be inserted to node } `; } var generateQuadTreeExports = generateQuadTree.exports; var generateBounds = {exports: {}}; generateBounds.exports = generateBoundsFunction$1; generateBounds.exports.generateFunctionBody = generateBoundsFunctionBody; const createPatternBuilder$3 = createPatternBuilder$6; function generateBoundsFunction$1(dimension) { let code = generateBoundsFunctionBody(dimension); return new Function('bodies', 'settings', 'random', code); } function generateBoundsFunctionBody(dimension) { let pattern = createPatternBuilder$3(dimension); let code = ` var boundingBox = { ${pattern('min_{var}: 0, max_{var}: 0,', {indent: 4})} }; return { box: boundingBox, update: updateBoundingBox, reset: resetBoundingBox, getBestNewPosition: function (neighbors) { var ${pattern('base_{var} = 0', {join: ', '})}; if (neighbors.length) { for (var i = 0; i < neighbors.length; ++i) { let neighborPos = neighbors[i].pos; ${pattern('base_{var} += neighborPos.{var};', {indent: 10})} } ${pattern('base_{var} /= neighbors.length;', {indent: 8})} } else { ${pattern('base_{var} = (boundingBox.min_{var} + boundingBox.max_{var}) / 2;', {indent: 8})} } var springLength = settings.springLength; return { ${pattern('{var}: base_{var} + (random.nextDouble() - 0.5) * springLength,', {indent: 8})} }; } }; function updateBoundingBox() { var i = bodies.length; if (i === 0) return; // No bodies - no borders. ${pattern('var max_{var} = -Infinity;', {indent: 4})} ${pattern('var min_{var} = Infinity;', {indent: 4})} while(i--) { // this is O(n), it could be done faster with quadtree, if we check the root node bounds var bodyPos = bodies[i].pos; ${pattern('if (bodyPos.{var} < min_{var}) min_{var} = bodyPos.{var};', {indent: 6})} ${pattern('if (bodyPos.{var} > max_{var}) max_{var} = bodyPos.{var};', {indent: 6})} } ${pattern('boundingBox.min_{var} = min_{var};', {indent: 4})} ${pattern('boundingBox.max_{var} = max_{var};', {indent: 4})} } function resetBoundingBox() { ${pattern('boundingBox.min_{var} = boundingBox.max_{var} = 0;', {indent: 4})} } `; return code; } var generateBoundsExports = generateBounds.exports; var generateCreateDragForce = {exports: {}}; const createPatternBuilder$2 = createPatternBuilder$6; generateCreateDragForce.exports = generateCreateDragForceFunction$1; generateCreateDragForce.exports.generateCreateDragForceFunctionBody = generateCreateDragForceFunctionBody; function generateCreateDragForceFunction$1(dimension) { let code = generateCreateDragForceFunctionBody(dimension); return new Function('options', code); } function generateCreateDragForceFunctionBody(dimension) { let pattern = createPatternBuilder$2(dimension); let code = ` if (!Number.isFinite(options.dragCoefficient)) throw new Error('dragCoefficient is not a finite number'); return { update: function(body) { ${pattern('body.force.{var} -= options.dragCoefficient * body.velocity.{var};', {indent: 6})} } }; `; return code; } var generateCreateDragForceExports = generateCreateDragForce.exports; var generateCreateSpringForce = {exports: {}}; const createPatternBuilder$1 = createPatternBuilder$6; generateCreateSpringForce.exports = generateCreateSpringForceFunction$1; generateCreateSpringForce.exports.generateCreateSpringForceFunctionBody = generateCreateSpringForceFunctionBody; function generateCreateSpringForceFunction$1(dimension) { let code = generateCreateSpringForceFunctionBody(dimension); return new Function('options', 'random', code); } function generateCreateSpringForceFunctionBody(dimension) { let pattern = createPatternBuilder$1(dimension); let code = ` if (!Number.isFinite(options.springCoefficient)) throw new Error('Spring coefficient is not a number'); if (!Number.isFinite(options.springLength)) throw new Error('Spring length is not a number'); return { /** * Updates forces acting on a spring */ update: function (spring) { var body1 = spring.from; var body2 = spring.to; var length = spring.length < 0 ? options.springLength : spring.length; ${pattern('var d{var} = body2.pos.{var} - body1.pos.{var};', {indent: 6})} var r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); if (r === 0) { ${pattern('d{var} = (random.nextDouble() - 0.5) / 50;', {indent: 8})} r = Math.sqrt(${pattern('d{var} * d{var}', {join: ' + '})}); } var d = r - length; var coefficient = ((spring.coefficient > 0) ? spring.coefficient : options.springCoefficient) * d / r; ${pattern('body1.force.{var} += coefficient * d{var}', {indent: 6})}; body1.springCount += 1; body1.springLength += r; ${pattern('body2.force.{var} -= coefficient * d{var}', {indent: 6})}; body2.springCount += 1; body2.springLength += r; } }; `; return code; } var generateCreateSpringForceExports = generateCreateSpringForce.exports; var generateIntegrator = {exports: {}}; const createPatternBuilder = createPatternBuilder$6; generateIntegrator.exports = generateIntegratorFunction$1; generateIntegrator.exports.generateIntegratorFunctionBody = generateIntegratorFunctionBody; function generateIntegratorFunction$1(dimension) { let code = generateIntegratorFunctionBody(dimension); return new Function('bodies', 'timeStep', 'adaptiveTimeStepWeight', code); } function generateIntegratorFunctionBody(dimension) { let pattern = createPatternBuilder(dimension); let code = ` var length = bodies.length; if (length === 0) return 0; ${pattern('var d{var} = 0, t{var} = 0;', {indent: 2})} for (var i = 0; i < length; ++i) { var body = bodies[i]; if (body.isPinned) continue; if (adaptiveTimeStepWeight && body.springCount) { timeStep = (adaptiveTimeStepWeight * body.springLength/body.springCount); } var coeff = timeStep / body.mass; ${pattern('body.velocity.{var} += coeff * body.force.{var};', {indent: 4})} ${pattern('var v{var} = body.velocity.{var};', {indent: 4})} var v = Math.sqrt(${pattern('v{var} * v{var}', {join: ' + '})}); if (v > 1) { // We normalize it so that we move within timeStep range. // for the case when v <= 1 - we let velocity to fade out. ${pattern('body.velocity.{var} = v{var} / v;', {indent: 6})} } ${pattern('d{var} = timeStep * body.velocity.{var};', {indent: 4})} ${pattern('body.pos.{var} += d{var};', {indent: 4})} ${pattern('t{var} += Math.abs(d{var});', {indent: 4})} } return (${pattern('t{var} * t{var}', {join: ' + '})})/length; `; return code; } var generateIntegratorExports = generateIntegrator.exports; var spring; var hasRequiredSpring; function requireSpring () { if (hasRequiredSpring) return spring; hasRequiredSpring = 1; spring = Spring; /** * Represents a physical spring. Spring connects two bodies, has rest length * stiffness coefficient and optional weight */ function Spring(fromBody, toBody, length, springCoefficient) { this.from = fromBody; this.to = toBody; this.length = length; this.coefficient = springCoefficient; } return spring; } var ngraph_merge; var hasRequiredNgraph_merge; function requireNgraph_merge () { if (hasRequiredNgraph_merge) return ngraph_merge; hasRequiredNgraph_merge = 1; ngraph_merge = merge; /** * Augments `target` with properties in `options`. Does not override * target's properties if they are defined and matches expected type in * options * * @returns {Object} merged object */ function merge(target, options) { var key; if (!target) { target = {}; } if (options) { for (key in options) { if (options.hasOwnProperty(key)) { var targetHasIt = target.hasOwnProperty(key), optionsValueType = typeof options[key], shouldReplace = !targetHasIt || (typeof target[key] !== optionsValueType); if (shouldReplace) { target[key] = options[key]; } else if (optionsValueType === 'object') { // go deep, don't care about loops here, we are simple API!: target[key] = merge(target[key], options[key]); } } } } return target; } return ngraph_merge; } var ngraph_random = {exports: {}}; var hasRequiredNgraph_random; function requireNgraph_random () { if (hasRequiredNgraph_random) return ngraph_random.exports; hasRequiredNgraph_random = 1; ngraph_random.exports = random; // TODO: Deprecate? ngraph_random.exports.random = random, ngraph_random.exports.randomIterator = randomIterator; /** * Creates seeded PRNG with two methods: * next() and nextDouble() */ function random(inputSeed) { var seed = typeof inputSeed === 'number' ? inputSeed : (+new Date()); return new Generator(seed) } function Generator(seed) { this.seed = seed; } /** * Generates random integer number in the range from 0 (inclusive) to maxValue (exclusive) * * @param maxValue Number REQUIRED. Omitting this number will result in NaN values from PRNG. */ Generator.prototype.next = next; /** * Generates random double number in the range from 0 (inclusive) to 1 (exclusive) * This function is the same as Math.random() (except that it could be seeded) */ Generator.prototype.nextDouble = nextDouble; /** * Returns a random real number from uniform distribution in [0, 1) */ Generator.prototype.uniform = nextDouble; /** * Returns a random real number from a Gaussian distribution * with 0 as a mean, and 1 as standard deviation u ~ N(0,1) */ Generator.prototype.gaussian = gaussian; function gaussian() { // use the polar form of the Box-Muller transform // based on https://introcs.cs.princeton.edu/java/23recursion/StdRandom.java var r, x, y; do { x = this.nextDouble() * 2 - 1; y = this.nextDouble() * 2 - 1; r = x * x + y * y; } while (r >= 1 || r === 0); return x * Math.sqrt(-2 * Math.log(r)/r); } /** * See https://twitter.com/anvaka/status/1296182534150135808 */ Generator.prototype.levy = levy; function levy() { var beta = 3 / 2; var sigma = Math.pow( gamma( 1 + beta ) * Math.sin(Math.PI * beta / 2) / (gamma((1 + beta) / 2) * beta * Math.pow(2, (beta - 1) / 2)), 1/beta ); return this.gaussian() * sigma / Math.pow(Math.abs(this.gaussian()), 1/beta); } // gamma function approximation function gamma(z) { return Math.sqrt(2 * Math.PI / z) * Math.pow((1 / Math.E) * (z + 1 / (12 * z - 1 / (10 * z))), z); } function nextDouble() { var seed = this.seed; // Robert Jenkins' 32 bit integer hash function. seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff; seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff; seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff; seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff; seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff; seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff; this.seed = seed; return (seed & 0xfffffff) / 0x10000000; } function next(maxValue) { return Math.floor(this.nextDouble() * maxValue); } /* * Creates iterator over array, which returns items of array in random order * Time complexity is guaranteed to be O(n); */ function randomIterator(array, customRandom) { var localRandom = customRandom || random(); if (typeof localRandom.next !== 'function') { throw new Error('customRandom does not match expected API: next() function is missing'); } return { forEach: forEach, /** * Shuffles array randomly, in place. */ shuffle: shuffle }; function shuffle() { var i, j, t; for (i = array.length - 1; i > 0; --i) { j = localRandom.next(i + 1); // i inclusive t = array[j]; array[j] = array[i]; array[i] = t; } return array; } function forEach(callback) { var i, j, t; for (i = array.length - 1; i > 0; --i) { j = localRandom.next(i + 1); // i inclusive t = array[j]; array[j] = array[i]; array[i] = t; callback(t); } if (array.length) { callback(array[0]); } } } return ngraph_random.exports; } /** * Manages a simulation of physical forces acting on bodies and springs. */ var createPhysicsSimulator_1 = createPhysicsSimulator; var generateCreateBodyFunction = generateCreateBodyExports; var generateQuadTreeFunction = generateQuadTreeExports; var generateBoundsFunction = generateBoundsExports; var generateCreateDragForceFunction = generateCreateDragForceExports; var generateCreateSpringForceFunction = generateCreateSpringForceExports; var generateIntegratorFunction = generateIntegratorExports; var dimensionalCache = {}; function createPhysicsSimulator(settings) { var Spring = requireSpring(); var merge = requireNgraph_merge(); var eventify = ngraph_events; if (settings) { // Check for names from older versions of the layout if (settings.springCoeff !== undefined) throw new Error('springCoeff was renamed to springCoefficient'); if (settings.dragCoeff !== undefined) throw new Error('dragCoeff was renamed to dragCoefficient'); } settings = merge(settings, { /** * Ideal length for links (springs in physical model). */ springLength: 10, /** * Hook's law coefficient. 1 - solid spring. */ springCoefficient: 0.8, /** * Coulomb's law coefficient. It's used to repel nodes thus should be negative * if you make it positive nodes start attract each other :). */ gravity: -12, /** * Theta coefficient from Barnes Hut simulation. Ranged between (0, 1). * The closer it's to 1 the more nodes algorithm will have to go through. * Setting it to one makes Barnes Hut simulation no different from * brute-force forces calculation (each node is considered). */ theta: 0.8, /** * Drag force coefficient. Used to slow down system, thus should be less than 1. * The closer it is to 0 the less tight system will be. */ dragCoefficient: 0.9, // TODO: Need to rename this to something better. E.g. `dragCoefficient` /** * Default time step (dt) for forces integration */ timeStep : 0.5, /** * Adaptive time step uses average spring length to compute actual time step: * See: https://twitter.com/anvaka/status/1293067160755957760 */ adaptiveTimeStepWeight: 0, /** * This parameter defines number of dimensions of the space where simulation * is performed. */ dimensions: 2, /** * In debug mode more checks are performed, this will help you catch errors * quickly, however for production build it is recommended to turn off this flag * to speed up computation. */ debug: false }); var factory = dimensionalCache[settings.dimensions]; if (!factory) { var dimensions = settings.dimensions; factory = { Body: generateCreateBodyFunction(dimensions, settings.debug), createQuadTree: generateQuadTreeFunction(dimensions), createBounds: generateBoundsFunction(dimensions), createDragForce: generateCreateDragForceFunction(dimensions), createSpringForce: generateCreateSpringForceFunction(dimensions), integrate: generateIntegratorFunction(dimensions), }; dimensionalCache[dimensions] = factory; } var Body = factory.Body; var createQuadTree = factory.createQuadTree; var createBounds = factory.createBounds; var createDragForce = factory.createDragForce; var createSpringForce = factory.createSpringForce; var integrate = factory.integrate; var createBody = pos => new Body(pos); var random = requireNgraph_random().random(42); var bodies = []; // Bodies in this simulation. var springs = []; // Springs in this simulation. var quadTree = createQuadTree(settings, random); var bounds = createBounds(bodies, settings, random); var springForce = createSpringForce(settings, random); var dragForce = createDragForce(settings); var totalMovement = 0; // how much movement we made on last step var forces = []; var forceMap = new Map(); var iterationNumber = 0; addForce('nbody', nbodyForce); addForce('spring', updateSpringForce); var publicApi = { /** * Array of bodies, registered with current simulator * * Note: To add new body, use addBody() method. This property is only * exposed for testing/performance purposes. */ bodies: bodies, quadTree: quadTree, /** * Array of springs, registered with current simulator * * Note: To add new spring, use addSpring() method. This property is only * exposed for testing/performance purposes. */ springs: springs, /** * Returns settings with which current simulator was initialized */ settings: settings, /** * Adds a new force to simulation */ addForce: addForce, /** * Removes a force from the simulation. */ removeForce: removeForce, /** * Returns a map of all registered forces. */ getForces: getForces, /** * Performs one step of force simulation. * * @returns {boolean} true if system is considered stable; False otherwise. */ step: function () { for (var i = 0; i < forces.length; ++i) { forces[i](iterationNumber); } var movement = integrate(bodies, settings.timeStep, settings.adaptiveTimeStepWeight); iterationNumber += 1; return movement; }, /** * Adds body to the system * * @param {ngraph.physics.primitives.Body} body physical body * * @returns {ngraph.physics.primitives.Body} added body */ addBody: function (body) { if (!body) { throw new Error('Body is required'); } bodies.push(body); return body; }, /** * Adds body to the system at given position * * @param {Object} pos position of a body * * @returns {ngraph.physics.primitives.Body} added body */ addBodyAt: function (pos) { if (!pos) { throw new Error('Body position is required'); } var body = createBody(pos); bodies.push(body); return body; }, /** * Removes body from the system * * @param {ngraph.physics.primitives.Body} body to remove * * @returns {Boolean} true if body found and removed. falsy otherwise; */ removeBody: function (body) { if (!body) { return; } var idx = bodies.indexOf(body); if (idx < 0) { return; } bodies.splice(idx, 1); if (bodies.length === 0) { bounds.reset(); } return true; }, /** * Adds a spring to this simulation. * * @returns {Object} - a handle for a spring. If you want to later remove * spring pass it to removeSpring() method. */ addSpring: function (body1, body2, springLength, springCoefficient) { if (!body1 || !body2) { throw new Error('Cannot add null spring to force simulator'); } if (typeof springLength !== 'number') { springLength = -1; // assume global configuration } var spring = new Spring(body1, body2, springLength, springCoefficient >= 0 ? springCoefficient : -1); springs.push(spring); // TODO: could mark simulator as dirty. return spring; }, /** * Returns amount of movement performed on last step() call */ getTotalMovement: function () { return totalMovement; }, /** * Removes spring from the system * * @param {Object} spring to remove. Spring is an object returned by addSpring * * @returns {Boolean} true if spring found and removed. falsy otherwise; */ removeSpring: function (spring) { if (!spring) { return; } var idx = springs.indexOf(spring); if (idx > -1) { springs.splice(idx, 1); return true; } }, getBestNewBodyPosition: function (neighbors) { return bounds.getBestNewPosition(neighbors); }, /** * Returns bounding box which covers all bodies */ getBBox: getBoundingBox, getBoundingBox: getBoundingBox, invalidateBBox: function () { console.warn('invalidateBBox() is deprecated, bounds always recomputed on `getBBox()` call'); }, // TODO: Move the force specific stuff to force gravity: function (value) { if (value !== undefined) { settings.gravity = value; quadTree.options({gravity: value}); return this; } else { return settings.gravity; } }, theta: function (value) { if (value !== undefined) { settings.theta = value; quadTree.options({theta: value}); return this; } else { return settings.theta; } }, /** * Returns pseudo-random number generator instance. */ random: random }; // allow settings modification via public API: expose(settings, publicApi); eventify(publicApi); return publicApi; function getBoundingBox() { bounds.update(); return bounds.box; } function addForce(forceName, forceFunction) { if (forceMap.has(forceName)) throw new Error('Force ' + forceName + ' is already added'); forceMap.set(forceName, forceFunction); forces.push(forceFunction); } function removeForce(forceName) { var forceIndex = forces.indexOf(forceMap.get(forceName)); if (forceIndex < 0) return; forces.splice(forceIndex, 1); forceMap.delete(forceName); } function getForces() { // TODO: Should I trust them or clone the forces? return forceMap; } function nbodyForce(/* iterationUmber */) { if (bodies.length === 0) return; quadTree.insertBodies(bodies); var i = bodies.length; while (i--) { var body = bodies[i]; if (!body.isPinned) { body.reset(); quadTree.updateBodyForce(body); dragForce.update(body); } } } function updateSpringForce() { var i = springs.length; while (i--) { springForce.update(springs[i]); } } } function expose(settings, target) { for (var key in settings) { augment(settings, target, key); } } function augment(source, target, key) { if (!source.hasOwnProperty(key)) return; if (typeof target[key] === 'function') { // this accessor is already defined. Ignore it return; } var sourceIsNumber = Number.isFinite(source[key]); if (sourceIsNumber) { target[key] = function (value) { if (value !== undefined) { if (!Number.isFinite(value)) throw new Error('Value of ' + key + ' should be a valid number.'); source[key] = value; return target; } return source[key]; }; } else { target[key] = function (value) { if (value !== undefined) { source[key] = value; return target; } return source[key]; }; } } ngraph_forcelayout.exports = createLayout; ngraph_forcelayout.exports.simulator = createPhysicsSimulator_1; var eventify = ngraph_events; /** * Creates force based layout for a given graph. * * @param {ngraph.graph} graph which needs to be laid out * @param {object} physicsSettings if you need custom settings * for physics simulator you can pass your own settings here. If it's not passed * a default one will be created. */ function createLayout(graph, physicsSettings) { if (!graph) { throw new Error('Graph structure cannot be undefined'); } var createSimulator = (physicsSettings && physicsSettings.createSimulator) || createPhysicsSimulator_1; var physicsSimulator = createSimulator(physicsSettings); if (Array.isArray(physicsSettings)) throw new Error('Physics settings is expected to be an object'); var nodeMass = graph.version > 19 ? defaultSetNodeMass : defaultArrayNodeMass; if (physicsSettings && typeof physicsSettings.nodeMass === 'function') { nodeMass = physicsSettings.nodeMass; } var nodeBodies = new Map(); var springs = {}; var bodiesCount = 0; var springTransform = physicsSimulator.settings.springTransform || noop; // Initialize physics with what we have in the graph: initPhysics(); listenToEvents(); var wasStable = false; var api = { /** * Performs one step of iterative layout algorithm * * @returns {boolean} true if the system should be considered stable; False otherwise. * The system is stable if no further call to `step()` can improve the layout. */ step: function() { if (bodiesCount === 0) { updateStableStatus(true); return true; } var lastMove = physicsSimulator.step(); // Save the movement in case if someone wants to query it in the step // callback. api.lastMove = lastMove; // Allow listeners to perform low-level actions after nodes are updated. api.fire('step'); var ratio = lastMove/bodiesCount; var isStableNow = ratio <= 0.01; // TODO: The number is somewhat arbitrary... updateStableStatus(isStableNow); return isStableNow; }, /** * For a given `nodeId` returns position */ getNodePosition: function (nodeId) { return getInitializedBody(nodeId).pos; }, /** * Sets position of a node to a given coordinates * @param {string} nodeId node identifier * @param {number} x position of a node * @param {number} y position of a node * @param {number=} z position of node (only if applicable to body) */ setNodePosition: function (nodeId) { var body = getInitializedBody(nodeId); body.setPosition.apply(body, Array.prototype.slice.call(arguments, 1)); }, /** * @returns {Object} Link position by link id * @returns {Object.from} {x, y} coordinates of link start * @returns {Object.to} {x, y} coordinates of link end */ getLinkPosition: function (linkId) { var spring = springs[linkId]; if (spring) { return { from: spring.from.pos, to: spring.to.pos }; } }, /** * @returns {Object} area required to fit in the graph. Object contains * `x1`, `y1` - top left coordinates * `x2`, `y2` - bottom right coordinates */ getGraphRect: function () { return physicsSimulator.getBBox(); }, /** * Iterates over each body in the layout simulator and performs a callback(body, nodeId) */ forEachBody: forEachBody, /* * Requests layout algorithm to pin/unpin node to its current position * Pinned nodes should not be affected by layout algorithm and always * remain at their position */ pinNode: function (node, isPinned) { var body = getInitializedBody(node.id); body.isPinned = !!isPinned; }, /** * Checks whether given graph's node is currently pinned */ isNodePinned: function (node) { return getInitializedBody(node.id).isPinned; }, /** * Request to release all resources */ dispose: function() { graph.off('changed', onGraphChanged); api.fire('disposed'); }, /** * Gets physical body for a given node id. If node is not found undefined * value is returned. */ getBody: getBody, /** * Gets spring for a given edge. * * @param {string} linkId link identifer. If two arguments are passed then * this argument is treated as formNodeId * @param {string=} toId when defined this parameter denotes head of the link * and first argument is treated as tail of the link (fromId) */ getSpring: getSpring, /** * Returns length of cumulative force vector. The closer this to zero - the more stable the system is */ getForceVectorLength: getForceVectorLength, /** * [Read only] Gets current physics simulator */ simulator: physicsSimulator, /** * Gets the graph that was used for layout */ graph: graph, /** * Gets amount of movement performed during last step operation */ lastMove: 0 }; eventify(api); return api; function updateStableStatus(isStableNow) { if (wasStable !== isStableNow) { wasStable = isStableNow; onStableChanged(isStableNow); } } function forEachBody(cb) { nodeBodies.forEach(cb); } function getForceVectorLength() { var fx = 0, fy = 0; forEachBody(function(body) { fx += Math.abs(body.force.x); fy += Math.abs(body.force.y); }); return Math.sqrt(fx * fx + fy * fy); } function getSpring(fromId, toId) { var linkId; if (toId === undefined) { if (typeof fromId !== 'object') { // assume fromId as a linkId: linkId = fromId; } else { // assume fromId to be a link object: linkId = fromId.id; } } else { // toId is defined, should grab link: var link = graph.hasLink(fromId, toId); if (!link) return; linkId = link.id; } return springs[linkId]; } function getBody(nodeId) { return nodeBodies.get(nodeId); } function listenToEvents() { graph.on('changed', onGraphChanged); } function onStableChanged(isStable) { api.fire('stable', isStable); } function onGraphChanged(changes) { for (var i = 0; i < changes.length; ++i) { var change = changes[i]; if (change.changeType === 'add') { if (change.node) { initBody(change.node.id); } if (change.link) { initLink(change.link); } } else if (change.changeType === 'remove') { if (change.node) { releaseNode(change.node); } if (change.link) { releaseLink(change.link); } } } bodiesCount = graph.getNodesCount(); } function initPhysics() { bodiesCount = 0; graph.forEachNode(function (node) { initBody(node.id); bodiesCount += 1; }); graph.forEachLink(initLink); } function initBody(nodeId) { var body = nodeBodies.get(nodeId); if (!body) { var node = graph.getNode(nodeId); if (!node) { throw new Error('initBody() was called with unknown node id'); } var pos = node.position; if (!pos) { var neighbors = getNeighborBodies(node); pos = physicsSimulator.getBestNewBodyPosition(neighbors); } body = physicsSimulator.addBodyAt(pos); body.id = nodeId; nodeBodies.set(nodeId, body); updateBodyMass(nodeId); if (isNodeOriginallyPinned(node)) { body.isPinned = true; } } } function releaseNode(node) { var nodeId = node.id; var body = nodeBodies.get(nodeId); if (body) { nodeBodies.delete(nodeId); physicsSimulator.removeBody(body); } } function initLink(link) { updateBodyMass(link.fromId); updateBodyMass(link.toId); var fromBody = nodeBodies.get(link.fromId), toBody = nodeBodies.get(link.toId), spring = physicsSimulator.addSpring(fromBody, toBody, link.length); springTransform(link, spring); springs[link.id] = spring; } function releaseLink(link) { var spring = springs[link.id]; if (spring) { var from = graph.getNode(link.fromId), to = graph.getNode(link.toId); if (from) updateBodyMass(from.id); if (to) updateBodyMass(to.id); delete springs[link.id]; physicsSimulator.removeSpring(spring); } } function getNeighborBodies(node) { // TODO: Could probably be done better on memory var neighbors = []; if (!node.links) { return neighbors; } var maxNeighbors = Math.min(node.links.length, 2); for (var i = 0; i < maxNeighbors; ++i) { var link = node.links[i]; var otherBody = link.fromId !== node.id ? nodeBodies.get(link.fromId) : nodeBodies.get(link.toId); if (otherBody && otherBody.pos) { neighbors.push(otherBody); } } return neighbors; } function updateBodyMass(nodeId) { var body = nodeBodies.get(nodeId); body.mass = nodeMass(nodeId); if (Number.isNaN(body.mass)) { throw new Error('Node mass should be a number'); } } /** * Checks whether graph node has in its settings pinned attribute, * which means layout algorithm cannot move it. Node can be marked * as pinned, if it has "isPinned" attribute, or when node.data has it. * * @param {Object} node a graph node to check * @return {Boolean} true if node should be treated as pinned; false otherwise. */ function isNodeOriginallyPinned(node) { return (node && (node.isPinned || (node.data && node.data.isPinned))); } function getInitializedBody(nodeId) { var body = nodeBodies.get(nodeId); if (!body) { initBody(nodeId); body = nodeBodies.get(nodeId); } return body; } /** * Calculates mass of a body, which corresponds to node with given id. * * @param {String|Number} nodeId identifier of a node, for which body mass needs to be calculated * @returns {Number} recommended mass of the body; */ function defaultArrayNodeMass(nodeId) { // This function is for older versions of ngraph.graph. var links = graph.getLinks(nodeId); if (!links) return 1; return 1 + links.length / 3.0; } function defaultSetNodeMass(nodeId) { var links = graph.getLinks(nodeId); if (!links) return 1; return 1 + links.size / 3.0; } } function noop() { } var ngraph_forcelayoutExports = ngraph_forcelayout.exports; var forcelayout = /*@__PURE__*/getDefaultExportFromCjs(ngraph_forcelayoutExports); /** * Checks if `value` is the * [language type](http://www.ecma-international.org/ecma-262/7.0/#sec-ecmascript-language-types) * of `Object`. (e.g. arrays, functions, objects, regexes, `new Number(0)`, and `new String('')`) * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an object, else `false`. * @example * * _.isObject({}); * // => true * * _.isObject([1, 2, 3]); * // => true * * _.isObject(_.noop); * // => true * * _.isObject(null); * // => false */ function isObject(value) { var type = typeof value; return value != null && (type == 'object' || type == 'function'); } /** Detect free variable `global` from Node.js. */ var freeGlobal = typeof global == 'object' && global && global.Object === Object && global; /** Detect free variable `self`. */ var freeSelf = typeof self == 'object' && self && self.Object === Object && self; /** Used as a reference to the global object. */ var root = freeGlobal || freeSelf || Function('return this')(); /** * Gets the timestamp of the number of milliseconds that have elapsed since * the Unix epoch (1 January 1970 00:00:00 UTC). * * @static * @memberOf _ * @since 2.4.0 * @category Date * @returns {number} Returns the timestamp. * @example * * _.defer(function(stamp) { * console.log(_.now() - stamp); * }, _.now()); * // => Logs the number of milliseconds it took for the deferred invocation. */ var now$1 = function() { return root.Date.now(); }; /** Used to match a single whitespace character. */ var reWhitespace = /\s/; /** * Used by `_.trim` and `_.trimEnd` to get the index of the last non-whitespace * character of `string`. * * @private * @param {string} string The string to inspect. * @returns {number} Returns the index of the last non-whitespace character. */ function trimmedEndIndex(string) { var index = string.length; while (index-- && reWhitespace.test(string.charAt(index))) {} return index; } /** Used to match leading whitespace. */ var reTrimStart = /^\s+/; /** * The base implementation of `_.trim`. * * @private * @param {string} string The string to trim. * @returns {string} Returns the trimmed string. */ function baseTrim(string) { return string ? string.slice(0, trimmedEndIndex(string) + 1).replace(reTrimStart, '') : string; } /** Built-in value references. */ var Symbol$1 = root.Symbol; /** Used for built-in method references. */ var objectProto$1 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty = objectProto$1.hasOwnProperty; /** * Used to resolve the * [`toStringTag`](http://ecma-international.org/ecma-262/7.0/#sec-object.prototype.tostring) * of values. */ var nativeObjectToString$1 = objectProto$1.toString; /** Built-in value references. */ var symToStringTag$1 = Symbol$1 ? Symbol$1.toStringTag : undefined; /** * A specialized version of `baseGetTag` which ignores `Symbol.toStringTag` values. * * @private * @param {*} value The value to query. * @returns {string} Returns the raw `toStringTag`. */ function getRawTag(value) { var isOwn = hasOwnProperty.call(value, symToStringTag$1), tag = value[symToStringTag$1]; try { value[symToStringTag$1] = undefined; var unmasked = true; } catch (e) {} var result = nativeObjectToString$1.call(value); if (unmasked) { if (isOwn) { value[symToStringTag$1] = tag; } else { delete value[symToStringTag$1]; } } return result; } /** Used for built-in method references. */ var objectProto = Object.prototype; /** * Used to resolve the * [`toStringTag`](http://ecma-international.org/ecma-262/7.0/#sec-object.prototype.tostring) * of values. */ var nativeObjectToString = objectProto.toString; /** * Converts `value` to a string using `Object.prototype.toString`. * * @private * @param {*} value The value to convert. * @returns {string} Returns the converted string. */ function objectToString(value) { return nativeObjectToString.call(value); } /** `Object#toString` result references. */ var nullTag = '[object Null]', undefinedTag = '[object Undefined]'; /** Built-in value references. */ var symToStringTag = Symbol$1 ? Symbol$1.toStringTag : undefined; /** * The base implementation of `getTag` without fallbacks for buggy environments. * * @private * @param {*} value The value to query. * @returns {string} Returns the `toStringTag`. */ function baseGetTag(value) { if (value == null) { return value === undefined ? undefinedTag : nullTag; } return (symToStringTag && symToStringTag in Object(value)) ? getRawTag(value) : objectToString(value); } /** * Checks if `value` is object-like. A value is object-like if it's not `null` * and has a `typeof` result of "object". * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is object-like, else `false`. * @example * * _.isObjectLike({}); * // => true * * _.isObjectLike([1, 2, 3]); * // => true * * _.isObjectLike(_.noop); * // => false * * _.isObjectLike(null); * // => false */ function isObjectLike(value) { return value != null && typeof value == 'object'; } /** `Object#toString` result references. */ var symbolTag = '[object Symbol]'; /** * Checks if `value` is classified as a `Symbol` primitive or object. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a symbol, else `false`. * @example * * _.isSymbol(Symbol.iterator); * // => true * * _.isSymbol('abc'); * // => false */ function isSymbol(value) { return typeof value == 'symbol' || (isObjectLike(value) && baseGetTag(value) == symbolTag); } /** Used as references for various `Number` constants. */ var NAN = 0 / 0; /** Used to detect bad signed hexadecimal string values. */ var reIsBadHex = /^[-+]0x[0-9a-f]+$/i; /** Used to detect binary string values. */ var reIsBinary = /^0b[01]+$/i; /** Used to detect octal string values. */ var reIsOctal = /^0o[0-7]+$/i; /** Built-in method references without a dependency on `root`. */ var freeParseInt = parseInt; /** * Converts `value` to a number. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to process. * @returns {number} Returns the number. * @example * * _.toNumber(3.2); * // => 3.2 * * _.toNumber(Number.MIN_VALUE); * // => 5e-324 * * _.toNumber(Infinity); * // => Infinity * * _.toNumber('3.2'); * // => 3.2 */ function toNumber(value) { if (typeof value == 'number') { return value; } if (isSymbol(value)) { return NAN; } if (isObject(value)) { var other = typeof value.valueOf == 'function' ? value.valueOf() : value; value = isObject(other) ? (other + '') : other; } if (typeof value != 'string') { return value === 0 ? value : +value; } value = baseTrim(value); var isBinary = reIsBinary.test(value); return (isBinary || reIsOctal.test(value)) ? freeParseInt(value.slice(2), isBinary ? 2 : 8) : (reIsBadHex.test(value) ? NAN : +value); } /** Error message constants. */ var FUNC_ERROR_TEXT = 'Expected a function'; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax = Math.max, nativeMin = Math.min; /** * Creates a debounced function that delays invoking `func` until after `wait` * milliseconds have elapsed since the last time the debounced function was * invoked. The debounced function comes with a `cancel` method to cancel * delayed `func` invocations and a `flush` method to immediately invoke them. * Provide `options` to indicate whether `func` should be invoked on the * leading and/or trailing edge of the `wait` timeout. The `func` is invoked * with the last arguments provided to the debounced function. Subsequent * calls to the debounced function return the result of the last `func` * invocation. * * **Note:** If `leading` and `trailing` options are `true`, `func` is * invoked on the trailing edge of the timeout only if the debounced function * is invoked more than once during the `wait` timeout. * * If `wait` is `0` and `leading` is `false`, `func` invocation is deferred * until to the next tick, similar to `setTimeout` with a timeout of `0`. * * See [David Corbacho's article](https://css-tricks.com/debouncing-throttling-explained-examples/) * for details over the differences between `_.debounce` and `_.throttle`. * * @static * @memberOf _ * @since 0.1.0 * @category Function * @param {Function} func The function to debounce. * @param {number} [wait=0] The number of milliseconds to delay. * @param {Object} [options={}] The options object. * @param {boolean} [options.leading=false] * Specify invoking on the leading edge of the timeout. * @param {number} [options.maxWait] * The maximum time `func` is allowed to be delayed before it's invoked. * @param {boolean} [options.trailing=true] * Specify invoking on the trailing edge of the timeout. * @returns {Function} Returns the new debounced function. * @example * * // Avoid costly calculations while the window size is in flux. * jQuery(window).on('resize', _.debounce(calculateLayout, 150)); * * // Invoke `sendMail` when clicked, debouncing subsequent calls. * jQuery(element).on('click', _.debounce(sendMail, 300, { * 'leading': true, * 'trailing': false * })); * * // Ensure `batchLog` is invoked once after 1 second of debounced calls. * var debounced = _.debounce(batchLog, 250, { 'maxWait': 1000 }); * var source = new EventSource('/stream'); * jQuery(source).on('message', debounced); * * // Cancel the trailing debounced invocation. * jQuery(window).on('popstate', debounced.cancel); */ function debounce(func, wait, options) { var lastArgs, lastThis, maxWait, result, timerId, lastCallTime, lastInvokeTime = 0, leading = false, maxing = false, trailing = true; if (typeof func != 'function') { throw new TypeError(FUNC_ERROR_TEXT); } wait = toNumber(wait) || 0; if (isObject(options)) { leading = !!options.leading; maxing = 'maxWait' in options; maxWait = maxing ? nativeMax(toNumber(options.maxWait) || 0, wait) : maxWait; trailing = 'trailing' in options ? !!options.trailing : trailing; } function invokeFunc(time) { var args = lastArgs, thisArg = lastThis; lastArgs = lastThis = undefined; lastInvokeTime = time; result = func.apply(thisArg, args); return result; } function leadingEdge(time) { // Reset any `maxWait` timer. lastInvokeTime = time; // Start the timer for the trailing edge. timerId = setTimeout(timerExpired, wait); // Invoke the leading edge. return leading ? invokeFunc(time) : result; } function remainingWait(time) { var timeSinceLastCall = time - lastCallTime, timeSinceLastInvoke = time - lastInvokeTime, timeWaiting = wait - timeSinceLastCall; return maxing ? nativeMin(timeWaiting, maxWait - timeSinceLastInvoke) : timeWaiting; } function shouldInvoke(time) { var timeSinceLastCall = time - lastCallTime, timeSinceLastInvoke = time - lastInvokeTime; // Either this is the first call, activity has stopped and we're at the // trailing edge, the system time has gone backwards and we're treating // it as the trailing edge, or we've hit the `maxWait` limit. return (lastCallTime === undefined || (timeSinceLastCall >= wait) || (timeSinceLastCall < 0) || (maxing && timeSinceLastInvoke >= maxWait)); } function timerExpired() { var time = now$1(); if (shouldInvoke(time)) { return trailingEdge(time); } // Restart the timer. timerId = setTimeout(timerExpired, remainingWait(time)); } function trailingEdge(time) { timerId = undefined; // Only invoke if we have `lastArgs` which means `func` has been // debounced at least once. if (trailing && lastArgs) { return invokeFunc(time); } lastArgs = lastThis = undefined; return result; } function cancel() { if (timerId !== undefined) { clearTimeout(timerId); } lastInvokeTime = 0; lastArgs = lastCallTime = lastThis = timerId = undefined; } function flush() { return timerId === undefined ? result : trailingEdge(now$1()); } function debounced() { var time = now$1(), isInvoking = shouldInvoke(time); lastArgs = arguments; lastThis = this; lastCallTime = time; if (isInvoking) { if (timerId === undefined) { return leadingEdge(lastCallTime); } if (maxing) { // Handle invocations in a tight loop. clearTimeout(timerId); timerId = setTimeout(timerExpired, wait); return invokeFunc(lastCallTime); } } if (timerId === undefined) { timerId = setTimeout(timerExpired, wait); } return result; } debounced.cancel = cancel; debounced.flush = flush; return debounced; } function _iterableToArrayLimit$4(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) return; f = !1; } else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0); } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return; } finally { if (o) throw n; } } return a; } } function _classCallCheck$1(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties$1(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey$4(descriptor.key), descriptor); } } function _createClass$1(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties$1(Constructor.prototype, protoProps); if (staticProps) _defineProperties$1(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _slicedToArray$4(arr, i) { return _arrayWithHoles$4(arr) || _iterableToArrayLimit$4(arr, i) || _unsupportedIterableToArray$4(arr, i) || _nonIterableRest$4(); } function _arrayWithHoles$4(arr) { if (Array.isArray(arr)) return arr; } function _unsupportedIterableToArray$4(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$4(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$4(o, minLen); } function _arrayLikeToArray$4(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableRest$4() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive$4(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey$4(arg) { var key = _toPrimitive$4(arg, "string"); return typeof key === "symbol" ? key : String(key); } var Prop = /*#__PURE__*/_createClass$1(function Prop(name, _ref) { var _ref$default = _ref["default"], defaultVal = _ref$default === void 0 ? null : _ref$default, _ref$triggerUpdate = _ref.triggerUpdate, triggerUpdate = _ref$triggerUpdate === void 0 ? true : _ref$triggerUpdate, _ref$onChange = _ref.onChange, onChange = _ref$onChange === void 0 ? function (newVal, state) {} : _ref$onChange; _classCallCheck$1(this, Prop); this.name = name; this.defaultVal = defaultVal; this.triggerUpdate = triggerUpdate; this.onChange = onChange; }); function index$2 (_ref2) { var _ref2$stateInit = _ref2.stateInit, stateInit = _ref2$stateInit === void 0 ? function () { return {}; } : _ref2$stateInit, _ref2$props = _ref2.props, rawProps = _ref2$props === void 0 ? {} : _ref2$props, _ref2$methods = _ref2.methods, methods = _ref2$methods === void 0 ? {} : _ref2$methods, _ref2$aliases = _ref2.aliases, aliases = _ref2$aliases === void 0 ? {} : _ref2$aliases, _ref2$init = _ref2.init, initFn = _ref2$init === void 0 ? function () {} : _ref2$init, _ref2$update = _ref2.update, updateFn = _ref2$update === void 0 ? function () {} : _ref2$update; // Parse props into Prop instances var props = Object.keys(rawProps).map(function (propName) { return new Prop(propName, rawProps[propName]); }); return function () { var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; // Holds component state var state = Object.assign({}, stateInit instanceof Function ? stateInit(options) : stateInit, // Support plain objects for backwards compatibility { initialised: false }); // keeps track of which props triggered an update var changedProps = {}; // Component constructor function comp(nodeElement) { initStatic(nodeElement, options); digest(); return comp; } var initStatic = function initStatic(nodeElement, options) { initFn.call(comp, nodeElement, state, options); state.initialised = true; }; var digest = debounce(function () { if (!state.initialised) { return; } updateFn.call(comp, state, changedProps); changedProps = {}; }, 1); // Getter/setter methods props.forEach(function (prop) { comp[prop.name] = getSetProp(prop); function getSetProp(_ref3) { var prop = _ref3.name, _ref3$triggerUpdate = _ref3.triggerUpdate, redigest = _ref3$triggerUpdate === void 0 ? false : _ref3$triggerUpdate, _ref3$onChange = _ref3.onChange, onChange = _ref3$onChange === void 0 ? function (newVal, state) {} : _ref3$onChange, _ref3$defaultVal = _ref3.defaultVal, defaultVal = _ref3$defaultVal === void 0 ? null : _ref3$defaultVal; return function (_) { var curVal = state[prop]; if (!arguments.length) { return curVal; } // Getter mode var val = _ === undefined ? defaultVal : _; // pick default if value passed is undefined state[prop] = val; onChange.call(comp, val, state, curVal); // track changed props !changedProps.hasOwnProperty(prop) && (changedProps[prop] = curVal); if (redigest) { digest(); } return comp; }; } }); // Other methods Object.keys(methods).forEach(function (methodName) { comp[methodName] = function () { var _methods$methodName; for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } return (_methods$methodName = methods[methodName]).call.apply(_methods$methodName, [comp, state].concat(args)); }; }); // Link aliases Object.entries(aliases).forEach(function (_ref4) { var _ref5 = _slicedToArray$4(_ref4, 2), alias = _ref5[0], target = _ref5[1]; return comp[alias] = comp[target]; }); // Reset all component props to their default value comp.resetProps = function () { props.forEach(function (prop) { comp[prop.name](prop.defaultVal); }); return comp; }; // comp.resetProps(); // Apply all prop defaults state._rerender = digest; // Expose digest method return comp; }; } var index$1 = (function (p) { return typeof p === 'function' ? p // fn : typeof p === 'string' ? function (obj) { return obj[p]; } // property name : function (obj) { return p; }; }); // constant class InternMap extends Map { constructor(entries, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (entries != null) for (const [key, value] of entries) this.set(key, value); } get(key) { return super.get(intern_get(this, key)); } has(key) { return super.has(intern_get(this, key)); } set(key, value) { return super.set(intern_set(this, key), value); } delete(key) { return super.delete(intern_delete(this, key)); } } function intern_get({_intern, _key}, value) { const key = _key(value); return _intern.has(key) ? _intern.get(key) : value; } function intern_set({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) return _intern.get(key); _intern.set(key, value); return value; } function intern_delete({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) { value = _intern.get(key); _intern.delete(key); } return value; } function keyof(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function max(values, valueof) { let max; if (valueof === undefined) { for (const value of values) { if (value != null && (max < value || (max === undefined && value >= value))) { max = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value; } } } return max; } function min(values, valueof) { let min; if (valueof === undefined) { for (const value of values) { if (value != null && (min > value || (min === undefined && value >= value))) { min = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value; } } } return min; } function _iterableToArrayLimit$3(arr, i) { var _i = null == arr ? null : "undefined" != typeof Symbol && arr[Symbol.iterator] || arr["@@iterator"]; if (null != _i) { var _s, _e, _x, _r, _arr = [], _n = !0, _d = !1; try { if (_x = (_i = _i.call(arr)).next, 0 === i) { if (Object(_i) !== _i) return; _n = !1; } else for (; !(_n = (_s = _x.call(_i)).done) && (_arr.push(_s.value), _arr.length !== i); _n = !0); } catch (err) { _d = !0, _e = err; } finally { try { if (!_n && null != _i.return && (_r = _i.return(), Object(_r) !== _r)) return; } finally { if (_d) throw _e; } } return _arr; } } function _objectWithoutPropertiesLoose$2(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties$2(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose$2(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _slicedToArray$3(arr, i) { return _arrayWithHoles$3(arr) || _iterableToArrayLimit$3(arr, i) || _unsupportedIterableToArray$3(arr, i) || _nonIterableRest$3(); } function _toConsumableArray$3(arr) { return _arrayWithoutHoles$3(arr) || _iterableToArray$3(arr) || _unsupportedIterableToArray$3(arr) || _nonIterableSpread$3(); } function _arrayWithoutHoles$3(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$3(arr); } function _arrayWithHoles$3(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$3(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$3(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$3(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$3(o, minLen); } function _arrayLikeToArray$3(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$3() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$3() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive$3(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey$3(arg) { var key = _toPrimitive$3(arg, "string"); return typeof key === "symbol" ? key : String(key); } var index = (function () { var list = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : []; var keyAccessors = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var multiItem = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true; var flattenKeys = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : false; var keys = (keyAccessors instanceof Array ? keyAccessors.length ? keyAccessors : [undefined] : [keyAccessors]).map(function (key) { return { keyAccessor: key, isProp: !(key instanceof Function) }; }); var indexedResult = list.reduce(function (res, item) { var iterObj = res; var itemVal = item; keys.forEach(function (_ref, idx) { var keyAccessor = _ref.keyAccessor, isProp = _ref.isProp; var key; if (isProp) { var _itemVal = itemVal, propVal = _itemVal[keyAccessor], rest = _objectWithoutProperties$2(_itemVal, [keyAccessor].map(_toPropertyKey$3)); key = propVal; itemVal = rest; } else { key = keyAccessor(itemVal, idx); } if (idx + 1 < keys.length) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = {}; } iterObj = iterObj[key]; } else { // Leaf key if (multiItem) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = []; } iterObj[key].push(itemVal); } else { iterObj[key] = itemVal; } } }); return res; }, {}); if (multiItem instanceof Function) { // Reduce leaf multiple values (function reduce(node) { var level = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 1; if (level === keys.length) { Object.keys(node).forEach(function (k) { return node[k] = multiItem(node[k]); }); } else { Object.values(node).forEach(function (child) { return reduce(child, level + 1); }); } })(indexedResult); // IIFE } var result = indexedResult; if (flattenKeys) { // flatten into array result = []; (function flatten(node) { var accKeys = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; if (accKeys.length === keys.length) { result.push({ keys: accKeys, vals: node }); } else { Object.entries(node).forEach(function (_ref2) { var _ref3 = _slicedToArray$3(_ref2, 2), key = _ref3[0], val = _ref3[1]; return flatten(val, [].concat(_toConsumableArray$3(accKeys), [key])); }); } })(indexedResult); //IIFE if (keyAccessors instanceof Array && keyAccessors.length === 0 && result.length === 1) { // clear keys if there's no key accessors (single result) result[0].keys = []; } } return result; }); function _iterableToArrayLimit$2(arr, i) { var _i = null == arr ? null : "undefined" != typeof Symbol && arr[Symbol.iterator] || arr["@@iterator"]; if (null != _i) { var _s, _e, _x, _r, _arr = [], _n = !0, _d = !1; try { if (_x = (_i = _i.call(arr)).next, 0 === i) { if (Object(_i) !== _i) return; _n = !1; } else for (; !(_n = (_s = _x.call(_i)).done) && (_arr.push(_s.value), _arr.length !== i); _n = !0); } catch (err) { _d = !0, _e = err; } finally { try { if (!_n && null != _i.return && (_r = _i.return(), Object(_r) !== _r)) return; } finally { if (_d) throw _e; } } return _arr; } } function ownKeys$1(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); enumerableOnly && (symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; })), keys.push.apply(keys, symbols); } return keys; } function _objectSpread2$1(target) { for (var i = 1; i < arguments.length; i++) { var source = null != arguments[i] ? arguments[i] : {}; i % 2 ? ownKeys$1(Object(source), !0).forEach(function (key) { _defineProperty$2(target, key, source[key]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)) : ownKeys$1(Object(source)).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } return target; } function _defineProperty$2(obj, key, value) { key = _toPropertyKey$2(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _objectWithoutPropertiesLoose$1(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties$1(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose$1(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _slicedToArray$2(arr, i) { return _arrayWithHoles$2(arr) || _iterableToArrayLimit$2(arr, i) || _unsupportedIterableToArray$2(arr, i) || _nonIterableRest$2(); } function _toConsumableArray$2(arr) { return _arrayWithoutHoles$2(arr) || _iterableToArray$2(arr) || _unsupportedIterableToArray$2(arr) || _nonIterableSpread$2(); } function _arrayWithoutHoles$2(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$2(arr); } function _arrayWithHoles$2(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$2(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$2(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$2(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$2(o, minLen); } function _arrayLikeToArray$2(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$2() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$2() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive$2(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey$2(arg) { var key = _toPrimitive$2(arg, "string"); return typeof key === "symbol" ? key : String(key); } var _excluded$1 = ["createObj", "updateObj", "exitObj", "objBindAttr", "dataBindAttr"]; function diffArrays(prev, next, idAccessor) { var result = { enter: [], update: [], exit: [] }; if (!idAccessor) { // use object references for comparison var prevSet = new Set(prev); var nextSet = new Set(next); new Set([].concat(_toConsumableArray$2(prevSet), _toConsumableArray$2(nextSet))).forEach(function (item) { var type = !prevSet.has(item) ? 'enter' : !nextSet.has(item) ? 'exit' : 'update'; result[type].push(type === 'update' ? [item, item] : item); }); } else { // compare by id (duplicate keys are ignored) var prevById = index(prev, idAccessor, false); var nextById = index(next, idAccessor, false); var byId = Object.assign({}, prevById, nextById); Object.entries(byId).forEach(function (_ref) { var _ref2 = _slicedToArray$2(_ref, 2), id = _ref2[0], item = _ref2[1]; var type = !prevById.hasOwnProperty(id) ? 'enter' : !nextById.hasOwnProperty(id) ? 'exit' : 'update'; result[type].push(type === 'update' ? [prevById[id], nextById[id]] : item); }); } return result; } function dataBindDiff(data, existingObjs, _ref3) { var _ref3$objBindAttr = _ref3.objBindAttr, objBindAttr = _ref3$objBindAttr === void 0 ? '__obj' : _ref3$objBindAttr, _ref3$dataBindAttr = _ref3.dataBindAttr, dataBindAttr = _ref3$dataBindAttr === void 0 ? '__data' : _ref3$dataBindAttr, idAccessor = _ref3.idAccessor, _ref3$purge = _ref3.purge, purge = _ref3$purge === void 0 ? false : _ref3$purge; var isObjValid = function isObjValid(obj) { return obj.hasOwnProperty(dataBindAttr); }; var removeObjs = existingObjs.filter(function (obj) { return !isObjValid(obj); }); var prevD = existingObjs.filter(isObjValid).map(function (obj) { return obj[dataBindAttr]; }); var nextD = data; var diff = purge ? { enter: nextD, exit: prevD, update: [] } // don't diff data in purge mode : diffArrays(prevD, nextD, idAccessor); diff.update = diff.update.map(function (_ref4) { var _ref5 = _slicedToArray$2(_ref4, 2), prevD = _ref5[0], nextD = _ref5[1]; if (prevD !== nextD) { // transfer obj to new data point (if different) nextD[objBindAttr] = prevD[objBindAttr]; nextD[objBindAttr][dataBindAttr] = nextD; } return nextD; }); diff.exit = diff.exit.concat(removeObjs.map(function (obj) { return _defineProperty$2({}, objBindAttr, obj); })); return diff; } function viewDigest(data, existingObjs, // list appendObj, // item => {...} function removeObj, // item => {...} function _ref7) { var _ref7$createObj = _ref7.createObj, createObj = _ref7$createObj === void 0 ? function (d) { return {}; } : _ref7$createObj, _ref7$updateObj = _ref7.updateObj, updateObj = _ref7$updateObj === void 0 ? function (obj, d) {} : _ref7$updateObj, _ref7$exitObj = _ref7.exitObj, exitObj = _ref7$exitObj === void 0 ? function (obj) {} : _ref7$exitObj, _ref7$objBindAttr = _ref7.objBindAttr, objBindAttr = _ref7$objBindAttr === void 0 ? '__obj' : _ref7$objBindAttr, _ref7$dataBindAttr = _ref7.dataBindAttr, dataBindAttr = _ref7$dataBindAttr === void 0 ? '__data' : _ref7$dataBindAttr, dataDiffOptions = _objectWithoutProperties$1(_ref7, _excluded$1); var _dataBindDiff = dataBindDiff(data, existingObjs, _objectSpread2$1({ objBindAttr: objBindAttr, dataBindAttr: dataBindAttr }, dataDiffOptions)), enter = _dataBindDiff.enter, update = _dataBindDiff.update, exit = _dataBindDiff.exit; // Remove exiting points exit.forEach(function (d) { var obj = d[objBindAttr]; delete d[objBindAttr]; // unbind obj exitObj(obj); removeObj(obj); }); var newObjs = createObjs(enter); var pointsData = [].concat(_toConsumableArray$2(enter), _toConsumableArray$2(update)); updateObjs(pointsData); // Add new points newObjs.forEach(appendObj); // function createObjs(data) { var newObjs = []; data.forEach(function (d) { var obj = createObj(d); if (obj) { obj[dataBindAttr] = d; d[objBindAttr] = obj; newObjs.push(obj); } }); return newObjs; } function updateObjs(data) { data.forEach(function (d) { var obj = d[objBindAttr]; if (obj) { obj[dataBindAttr] = d; updateObj(obj, d); } }); } } function initRange(domain, range) { switch (arguments.length) { case 0: break; case 1: this.range(domain); break; default: this.range(range).domain(domain); break; } return this; } const implicit = Symbol("implicit"); function ordinal() { var index = new InternMap(), domain = [], range = [], unknown = implicit; function scale(d) { let i = index.get(d); if (i === undefined) { if (unknown !== implicit) return unknown; index.set(d, i = domain.push(d) - 1); } return range[i % range.length]; } scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = [], index = new InternMap(); for (const value of _) { if (index.has(value)) continue; index.set(value, domain.push(value) - 1); } return scale; }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), scale) : range.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return ordinal(domain, range).unknown(unknown); }; initRange.apply(scale, arguments); return scale; } function colors(specifier) { var n = specifier.length / 6 | 0, colors = new Array(n), i = 0; while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6); return colors; } var schemePaired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928"); // This file is autogenerated. It's used to publish ESM to npm. function _typeof$1(obj) { "@babel/helpers - typeof"; return _typeof$1 = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof$1(obj); } // https://github.com/bgrins/TinyColor // Brian Grinstead, MIT License var trimLeft = /^\s+/; var trimRight = /\s+$/; function tinycolor(color, opts) { color = color ? color : ""; opts = opts || {}; // If input is already a tinycolor, return itself if (color instanceof tinycolor) { return color; } // If we are called as a function, call using new instead if (!(this instanceof tinycolor)) { return new tinycolor(color, opts); } var rgb = inputToRGB(color); this._originalInput = color, this._r = rgb.r, this._g = rgb.g, this._b = rgb.b, this._a = rgb.a, this._roundA = Math.round(100 * this._a) / 100, this._format = opts.format || rgb.format; this._gradientType = opts.gradientType; // Don't let the range of [0,255] come back in [0,1]. // Potentially lose a little bit of precision here, but will fix issues where // .5 gets interpreted as half of the total, instead of half of 1 // If it was supposed to be 128, this was already taken care of by `inputToRgb` if (this._r < 1) this._r = Math.round(this._r); if (this._g < 1) this._g = Math.round(this._g); if (this._b < 1) this._b = Math.round(this._b); this._ok = rgb.ok; } tinycolor.prototype = { isDark: function isDark() { return this.getBrightness() < 128; }, isLight: function isLight() { return !this.isDark(); }, isValid: function isValid() { return this._ok; }, getOriginalInput: function getOriginalInput() { return this._originalInput; }, getFormat: function getFormat() { return this._format; }, getAlpha: function getAlpha() { return this._a; }, getBrightness: function getBrightness() { //http://www.w3.org/TR/AERT#color-contrast var rgb = this.toRgb(); return (rgb.r * 299 + rgb.g * 587 + rgb.b * 114) / 1000; }, getLuminance: function getLuminance() { //http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef var rgb = this.toRgb(); var RsRGB, GsRGB, BsRGB, R, G, B; RsRGB = rgb.r / 255; GsRGB = rgb.g / 255; BsRGB = rgb.b / 255; if (RsRGB <= 0.03928) R = RsRGB / 12.92;else R = Math.pow((RsRGB + 0.055) / 1.055, 2.4); if (GsRGB <= 0.03928) G = GsRGB / 12.92;else G = Math.pow((GsRGB + 0.055) / 1.055, 2.4); if (BsRGB <= 0.03928) B = BsRGB / 12.92;else B = Math.pow((BsRGB + 0.055) / 1.055, 2.4); return 0.2126 * R + 0.7152 * G + 0.0722 * B; }, setAlpha: function setAlpha(value) { this._a = boundAlpha(value); this._roundA = Math.round(100 * this._a) / 100; return this; }, toHsv: function toHsv() { var hsv = rgbToHsv(this._r, this._g, this._b); return { h: hsv.h * 360, s: hsv.s, v: hsv.v, a: this._a }; }, toHsvString: function toHsvString() { var hsv = rgbToHsv(this._r, this._g, this._b); var h = Math.round(hsv.h * 360), s = Math.round(hsv.s * 100), v = Math.round(hsv.v * 100); return this._a == 1 ? "hsv(" + h + ", " + s + "%, " + v + "%)" : "hsva(" + h + ", " + s + "%, " + v + "%, " + this._roundA + ")"; }, toHsl: function toHsl() { var hsl = rgbToHsl$1(this._r, this._g, this._b); return { h: hsl.h * 360, s: hsl.s, l: hsl.l, a: this._a }; }, toHslString: function toHslString() { var hsl = rgbToHsl$1(this._r, this._g, this._b); var h = Math.round(hsl.h * 360), s = Math.round(hsl.s * 100), l = Math.round(hsl.l * 100); return this._a == 1 ? "hsl(" + h + ", " + s + "%, " + l + "%)" : "hsla(" + h + ", " + s + "%, " + l + "%, " + this._roundA + ")"; }, toHex: function toHex(allow3Char) { return rgbToHex(this._r, this._g, this._b, allow3Char); }, toHexString: function toHexString(allow3Char) { return "#" + this.toHex(allow3Char); }, toHex8: function toHex8(allow4Char) { return rgbaToHex(this._r, this._g, this._b, this._a, allow4Char); }, toHex8String: function toHex8String(allow4Char) { return "#" + this.toHex8(allow4Char); }, toRgb: function toRgb() { return { r: Math.round(this._r), g: Math.round(this._g), b: Math.round(this._b), a: this._a }; }, toRgbString: function toRgbString() { return this._a == 1 ? "rgb(" + Math.round(this._r) + ", " + Math.round(this._g) + ", " + Math.round(this._b) + ")" : "rgba(" + Math.round(this._r) + ", " + Math.round(this._g) + ", " + Math.round(this._b) + ", " + this._roundA + ")"; }, toPercentageRgb: function toPercentageRgb() { return { r: Math.round(bound01(this._r, 255) * 100) + "%", g: Math.round(bound01(this._g, 255) * 100) + "%", b: Math.round(bound01(this._b, 255) * 100) + "%", a: this._a }; }, toPercentageRgbString: function toPercentageRgbString() { return this._a == 1 ? "rgb(" + Math.round(bound01(this._r, 255) * 100) + "%, " + Math.round(bound01(this._g, 255) * 100) + "%, " + Math.round(bound01(this._b, 255) * 100) + "%)" : "rgba(" + Math.round(bound01(this._r, 255) * 100) + "%, " + Math.round(bound01(this._g, 255) * 100) + "%, " + Math.round(bound01(this._b, 255) * 100) + "%, " + this._roundA + ")"; }, toName: function toName() { if (this._a === 0) { return "transparent"; } if (this._a < 1) { return false; } return hexNames[rgbToHex(this._r, this._g, this._b, true)] || false; }, toFilter: function toFilter(secondColor) { var hex8String = "#" + rgbaToArgbHex(this._r, this._g, this._b, this._a); var secondHex8String = hex8String; var gradientType = this._gradientType ? "GradientType = 1, " : ""; if (secondColor) { var s = tinycolor(secondColor); secondHex8String = "#" + rgbaToArgbHex(s._r, s._g, s._b, s._a); } return "progid:DXImageTransform.Microsoft.gradient(" + gradientType + "startColorstr=" + hex8String + ",endColorstr=" + secondHex8String + ")"; }, toString: function toString(format) { var formatSet = !!format; format = format || this._format; var formattedString = false; var hasAlpha = this._a < 1 && this._a >= 0; var needsAlphaFormat = !formatSet && hasAlpha && (format === "hex" || format === "hex6" || format === "hex3" || format === "hex4" || format === "hex8" || format === "name"); if (needsAlphaFormat) { // Special case for "transparent", all other non-alpha formats // will return rgba when there is transparency. if (format === "name" && this._a === 0) { return this.toName(); } return this.toRgbString(); } if (format === "rgb") { formattedString = this.toRgbString(); } if (format === "prgb") { formattedString = this.toPercentageRgbString(); } if (format === "hex" || format === "hex6") { formattedString = this.toHexString(); } if (format === "hex3") { formattedString = this.toHexString(true); } if (format === "hex4") { formattedString = this.toHex8String(true); } if (format === "hex8") { formattedString = this.toHex8String(); } if (format === "name") { formattedString = this.toName(); } if (format === "hsl") { formattedString = this.toHslString(); } if (format === "hsv") { formattedString = this.toHsvString(); } return formattedString || this.toHexString(); }, clone: function clone() { return tinycolor(this.toString()); }, _applyModification: function _applyModification(fn, args) { var color = fn.apply(null, [this].concat([].slice.call(args))); this._r = color._r; this._g = color._g; this._b = color._b; this.setAlpha(color._a); return this; }, lighten: function lighten() { return this._applyModification(_lighten, arguments); }, brighten: function brighten() { return this._applyModification(_brighten, arguments); }, darken: function darken() { return this._applyModification(_darken, arguments); }, desaturate: function desaturate() { return this._applyModification(_desaturate, arguments); }, saturate: function saturate() { return this._applyModification(_saturate, arguments); }, greyscale: function greyscale() { return this._applyModification(_greyscale, arguments); }, spin: function spin() { return this._applyModification(_spin, arguments); }, _applyCombination: function _applyCombination(fn, args) { return fn.apply(null, [this].concat([].slice.call(args))); }, analogous: function analogous() { return this._applyCombination(_analogous, arguments); }, complement: function complement() { return this._applyCombination(_complement, arguments); }, monochromatic: function monochromatic() { return this._applyCombination(_monochromatic, arguments); }, splitcomplement: function splitcomplement() { return this._applyCombination(_splitcomplement, arguments); }, // Disabled until https://github.com/bgrins/TinyColor/issues/254 // polyad: function (number) { // return this._applyCombination(polyad, [number]); // }, triad: function triad() { return this._applyCombination(polyad, [3]); }, tetrad: function tetrad() { return this._applyCombination(polyad, [4]); } }; // If input is an object, force 1 into "1.0" to handle ratios properly // String input requires "1.0" as input, so 1 will be treated as 1 tinycolor.fromRatio = function (color, opts) { if (_typeof$1(color) == "object") { var newColor = {}; for (var i in color) { if (color.hasOwnProperty(i)) { if (i === "a") { newColor[i] = color[i]; } else { newColor[i] = convertToPercentage(color[i]); } } } color = newColor; } return tinycolor(color, opts); }; // Given a string or object, convert that input to RGB // Possible string inputs: // // "red" // "#f00" or "f00" // "#ff0000" or "ff0000" // "#ff000000" or "ff000000" // "rgb 255 0 0" or "rgb (255, 0, 0)" // "rgb 1.0 0 0" or "rgb (1, 0, 0)" // "rgba (255, 0, 0, 1)" or "rgba 255, 0, 0, 1" // "rgba (1.0, 0, 0, 1)" or "rgba 1.0, 0, 0, 1" // "hsl(0, 100%, 50%)" or "hsl 0 100% 50%" // "hsla(0, 100%, 50%, 1)" or "hsla 0 100% 50%, 1" // "hsv(0, 100%, 100%)" or "hsv 0 100% 100%" // function inputToRGB(color) { var rgb = { r: 0, g: 0, b: 0 }; var a = 1; var s = null; var v = null; var l = null; var ok = false; var format = false; if (typeof color == "string") { color = stringInputToObject(color); } if (_typeof$1(color) == "object") { if (isValidCSSUnit(color.r) && isValidCSSUnit(color.g) && isValidCSSUnit(color.b)) { rgb = rgbToRgb(color.r, color.g, color.b); ok = true; format = String(color.r).substr(-1) === "%" ? "prgb" : "rgb"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.v)) { s = convertToPercentage(color.s); v = convertToPercentage(color.v); rgb = hsvToRgb(color.h, s, v); ok = true; format = "hsv"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.l)) { s = convertToPercentage(color.s); l = convertToPercentage(color.l); rgb = hslToRgb$1(color.h, s, l); ok = true; format = "hsl"; } if (color.hasOwnProperty("a")) { a = color.a; } } a = boundAlpha(a); return { ok: ok, format: color.format || format, r: Math.min(255, Math.max(rgb.r, 0)), g: Math.min(255, Math.max(rgb.g, 0)), b: Math.min(255, Math.max(rgb.b, 0)), a: a }; } // Conversion Functions // -------------------- // `rgbToHsl`, `rgbToHsv`, `hslToRgb`, `hsvToRgb` modified from: // // `rgbToRgb` // Handle bounds / percentage checking to conform to CSS color spec // // *Assumes:* r, g, b in [0, 255] or [0, 1] // *Returns:* { r, g, b } in [0, 255] function rgbToRgb(r, g, b) { return { r: bound01(r, 255) * 255, g: bound01(g, 255) * 255, b: bound01(b, 255) * 255 }; } // `rgbToHsl` // Converts an RGB color value to HSL. // *Assumes:* r, g, and b are contained in [0, 255] or [0, 1] // *Returns:* { h, s, l } in [0,1] function rgbToHsl$1(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = Math.max(r, g, b), min = Math.min(r, g, b); var h, s, l = (max + min) / 2; if (max == min) { h = s = 0; // achromatic } else { var d = max - min; s = l > 0.5 ? d / (2 - max - min) : d / (max + min); switch (max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, l: l }; } // `hslToRgb` // Converts an HSL color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and l are contained [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hslToRgb$1(h, s, l) { var r, g, b; h = bound01(h, 360); s = bound01(s, 100); l = bound01(l, 100); function hue2rgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6; return p; } if (s === 0) { r = g = b = l; // achromatic } else { var q = l < 0.5 ? l * (1 + s) : l + s - l * s; var p = 2 * l - q; r = hue2rgb(p, q, h + 1 / 3); g = hue2rgb(p, q, h); b = hue2rgb(p, q, h - 1 / 3); } return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHsv` // Converts an RGB color value to HSV // *Assumes:* r, g, and b are contained in the set [0, 255] or [0, 1] // *Returns:* { h, s, v } in [0,1] function rgbToHsv(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = Math.max(r, g, b), min = Math.min(r, g, b); var h, s, v = max; var d = max - min; s = max === 0 ? 0 : d / max; if (max == min) { h = 0; // achromatic } else { switch (max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, v: v }; } // `hsvToRgb` // Converts an HSV color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and v are contained in [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hsvToRgb(h, s, v) { h = bound01(h, 360) * 6; s = bound01(s, 100); v = bound01(v, 100); var i = Math.floor(h), f = h - i, p = v * (1 - s), q = v * (1 - f * s), t = v * (1 - (1 - f) * s), mod = i % 6, r = [v, q, p, p, t, v][mod], g = [t, v, v, q, p, p][mod], b = [p, p, t, v, v, q][mod]; return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHex` // Converts an RGB color to hex // Assumes r, g, and b are contained in the set [0, 255] // Returns a 3 or 6 character hex function rgbToHex(r, g, b, allow3Char) { var hex = [pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16))]; // Return a 3 character hex if possible if (allow3Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0); } return hex.join(""); } // `rgbaToHex` // Converts an RGBA color plus alpha transparency to hex // Assumes r, g, b are contained in the set [0, 255] and // a in [0, 1]. Returns a 4 or 8 character rgba hex function rgbaToHex(r, g, b, a, allow4Char) { var hex = [pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16)), pad2(convertDecimalToHex(a))]; // Return a 4 character hex if possible if (allow4Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1) && hex[3].charAt(0) == hex[3].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0) + hex[3].charAt(0); } return hex.join(""); } // `rgbaToArgbHex` // Converts an RGBA color to an ARGB Hex8 string // Rarely used, but required for "toFilter()" function rgbaToArgbHex(r, g, b, a) { var hex = [pad2(convertDecimalToHex(a)), pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16))]; return hex.join(""); } // `equals` // Can be called with any tinycolor input tinycolor.equals = function (color1, color2) { if (!color1 || !color2) return false; return tinycolor(color1).toRgbString() == tinycolor(color2).toRgbString(); }; tinycolor.random = function () { return tinycolor.fromRatio({ r: Math.random(), g: Math.random(), b: Math.random() }); }; // Modification Functions // ---------------------- // Thanks to less.js for some of the basics here // function _desaturate(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.s -= amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function _saturate(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.s += amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function _greyscale(color) { return tinycolor(color).desaturate(100); } function _lighten(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.l += amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } function _brighten(color, amount) { amount = amount === 0 ? 0 : amount || 10; var rgb = tinycolor(color).toRgb(); rgb.r = Math.max(0, Math.min(255, rgb.r - Math.round(255 * -(amount / 100)))); rgb.g = Math.max(0, Math.min(255, rgb.g - Math.round(255 * -(amount / 100)))); rgb.b = Math.max(0, Math.min(255, rgb.b - Math.round(255 * -(amount / 100)))); return tinycolor(rgb); } function _darken(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.l -= amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } // Spin takes a positive or negative amount within [-360, 360] indicating the change of hue. // Values outside of this range will be wrapped into this range. function _spin(color, amount) { var hsl = tinycolor(color).toHsl(); var hue = (hsl.h + amount) % 360; hsl.h = hue < 0 ? 360 + hue : hue; return tinycolor(hsl); } // Combination Functions // --------------------- // Thanks to jQuery xColor for some of the ideas behind these // function _complement(color) { var hsl = tinycolor(color).toHsl(); hsl.h = (hsl.h + 180) % 360; return tinycolor(hsl); } function polyad(color, number) { if (isNaN(number) || number <= 0) { throw new Error("Argument to polyad must be a positive number"); } var hsl = tinycolor(color).toHsl(); var result = [tinycolor(color)]; var step = 360 / number; for (var i = 1; i < number; i++) { result.push(tinycolor({ h: (hsl.h + i * step) % 360, s: hsl.s, l: hsl.l })); } return result; } function _splitcomplement(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [tinycolor(color), tinycolor({ h: (h + 72) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 216) % 360, s: hsl.s, l: hsl.l })]; } function _analogous(color, results, slices) { results = results || 6; slices = slices || 30; var hsl = tinycolor(color).toHsl(); var part = 360 / slices; var ret = [tinycolor(color)]; for (hsl.h = (hsl.h - (part * results >> 1) + 720) % 360; --results;) { hsl.h = (hsl.h + part) % 360; ret.push(tinycolor(hsl)); } return ret; } function _monochromatic(color, results) { results = results || 6; var hsv = tinycolor(color).toHsv(); var h = hsv.h, s = hsv.s, v = hsv.v; var ret = []; var modification = 1 / results; while (results--) { ret.push(tinycolor({ h: h, s: s, v: v })); v = (v + modification) % 1; } return ret; } // Utility Functions // --------------------- tinycolor.mix = function (color1, color2, amount) { amount = amount === 0 ? 0 : amount || 50; var rgb1 = tinycolor(color1).toRgb(); var rgb2 = tinycolor(color2).toRgb(); var p = amount / 100; var rgba = { r: (rgb2.r - rgb1.r) * p + rgb1.r, g: (rgb2.g - rgb1.g) * p + rgb1.g, b: (rgb2.b - rgb1.b) * p + rgb1.b, a: (rgb2.a - rgb1.a) * p + rgb1.a }; return tinycolor(rgba); }; // Readability Functions // --------------------- // false // tinycolor.isReadable("#000", "#111",{level:"AA",size:"large"}) => false tinycolor.isReadable = function (color1, color2, wcag2) { var readability = tinycolor.readability(color1, color2); var wcag2Parms, out; out = false; wcag2Parms = validateWCAG2Parms(wcag2); switch (wcag2Parms.level + wcag2Parms.size) { case "AAsmall": case "AAAlarge": out = readability >= 4.5; break; case "AAlarge": out = readability >= 3; break; case "AAAsmall": out = readability >= 7; break; } return out; }; // `mostReadable` // Given a base color and a list of possible foreground or background // colors for that base, returns the most readable color. // Optionally returns Black or White if the most readable color is unreadable. // *Example* // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:false}).toHexString(); // "#112255" // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:true}).toHexString(); // "#ffffff" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"large"}).toHexString(); // "#faf3f3" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"small"}).toHexString(); // "#ffffff" tinycolor.mostReadable = function (baseColor, colorList, args) { var bestColor = null; var bestScore = 0; var readability; var includeFallbackColors, level, size; args = args || {}; includeFallbackColors = args.includeFallbackColors; level = args.level; size = args.size; for (var i = 0; i < colorList.length; i++) { readability = tinycolor.readability(baseColor, colorList[i]); if (readability > bestScore) { bestScore = readability; bestColor = tinycolor(colorList[i]); } } if (tinycolor.isReadable(baseColor, bestColor, { level: level, size: size }) || !includeFallbackColors) { return bestColor; } else { args.includeFallbackColors = false; return tinycolor.mostReadable(baseColor, ["#fff", "#000"], args); } }; // Big List of Colors // ------------------ // var names = tinycolor.names = { aliceblue: "f0f8ff", antiquewhite: "faebd7", aqua: "0ff", aquamarine: "7fffd4", azure: "f0ffff", beige: "f5f5dc", bisque: "ffe4c4", black: "000", blanchedalmond: "ffebcd", blue: "00f", blueviolet: "8a2be2", brown: "a52a2a", burlywood: "deb887", burntsienna: "ea7e5d", cadetblue: "5f9ea0", chartreuse: "7fff00", chocolate: "d2691e", coral: "ff7f50", cornflowerblue: "6495ed", cornsilk: "fff8dc", crimson: "dc143c", cyan: "0ff", darkblue: "00008b", darkcyan: "008b8b", darkgoldenrod: "b8860b", darkgray: "a9a9a9", darkgreen: "006400", darkgrey: "a9a9a9", darkkhaki: "bdb76b", darkmagenta: "8b008b", darkolivegreen: "556b2f", darkorange: "ff8c00", darkorchid: "9932cc", darkred: "8b0000", darksalmon: "e9967a", darkseagreen: "8fbc8f", darkslateblue: "483d8b", darkslategray: "2f4f4f", darkslategrey: "2f4f4f", darkturquoise: "00ced1", darkviolet: "9400d3", deeppink: "ff1493", deepskyblue: "00bfff", dimgray: "696969", dimgrey: "696969", dodgerblue: "1e90ff", firebrick: "b22222", floralwhite: "fffaf0", forestgreen: "228b22", fuchsia: "f0f", gainsboro: "dcdcdc", ghostwhite: "f8f8ff", gold: "ffd700", goldenrod: "daa520", gray: "808080", green: "008000", greenyellow: "adff2f", grey: "808080", honeydew: "f0fff0", hotpink: "ff69b4", indianred: "cd5c5c", indigo: "4b0082", ivory: "fffff0", khaki: "f0e68c", lavender: "e6e6fa", lavenderblush: "fff0f5", lawngreen: "7cfc00", lemonchiffon: "fffacd", lightblue: "add8e6", lightcoral: "f08080", lightcyan: "e0ffff", lightgoldenrodyellow: "fafad2", lightgray: "d3d3d3", lightgreen: "90ee90", lightgrey: "d3d3d3", lightpink: "ffb6c1", lightsalmon: "ffa07a", lightseagreen: "20b2aa", lightskyblue: "87cefa", lightslategray: "789", lightslategrey: "789", lightsteelblue: "b0c4de", lightyellow: "ffffe0", lime: "0f0", limegreen: "32cd32", linen: "faf0e6", magenta: "f0f", maroon: "800000", mediumaquamarine: "66cdaa", mediumblue: "0000cd", mediumorchid: "ba55d3", mediumpurple: "9370db", mediumseagreen: "3cb371", mediumslateblue: "7b68ee", mediumspringgreen: "00fa9a", mediumturquoise: "48d1cc", mediumvioletred: "c71585", midnightblue: "191970", mintcream: "f5fffa", mistyrose: "ffe4e1", moccasin: "ffe4b5", navajowhite: "ffdead", navy: "000080", oldlace: "fdf5e6", olive: "808000", olivedrab: "6b8e23", orange: "ffa500", orangered: "ff4500", orchid: "da70d6", palegoldenrod: "eee8aa", palegreen: "98fb98", paleturquoise: "afeeee", palevioletred: "db7093", papayawhip: "ffefd5", peachpuff: "ffdab9", peru: "cd853f", pink: "ffc0cb", plum: "dda0dd", powderblue: "b0e0e6", purple: "800080", rebeccapurple: "663399", red: "f00", rosybrown: "bc8f8f", royalblue: "4169e1", saddlebrown: "8b4513", salmon: "fa8072", sandybrown: "f4a460", seagreen: "2e8b57", seashell: "fff5ee", sienna: "a0522d", silver: "c0c0c0", skyblue: "87ceeb", slateblue: "6a5acd", slategray: "708090", slategrey: "708090", snow: "fffafa", springgreen: "00ff7f", steelblue: "4682b4", tan: "d2b48c", teal: "008080", thistle: "d8bfd8", tomato: "ff6347", turquoise: "40e0d0", violet: "ee82ee", wheat: "f5deb3", white: "fff", whitesmoke: "f5f5f5", yellow: "ff0", yellowgreen: "9acd32" }; // Make it easy to access colors via `hexNames[hex]` var hexNames = tinycolor.hexNames = flip(names); // Utilities // --------- // `{ 'name1': 'val1' }` becomes `{ 'val1': 'name1' }` function flip(o) { var flipped = {}; for (var i in o) { if (o.hasOwnProperty(i)) { flipped[o[i]] = i; } } return flipped; } // Return a valid alpha value [0,1] with all invalid values being set to 1 function boundAlpha(a) { a = parseFloat(a); if (isNaN(a) || a < 0 || a > 1) { a = 1; } return a; } // Take input from [0, n] and return it as [0, 1] function bound01(n, max) { if (isOnePointZero(n)) n = "100%"; var processPercent = isPercentage(n); n = Math.min(max, Math.max(0, parseFloat(n))); // Automatically convert percentage into number if (processPercent) { n = parseInt(n * max, 10) / 100; } // Handle floating point rounding errors if (Math.abs(n - max) < 0.000001) { return 1; } // Convert into [0, 1] range if it isn't already return n % max / parseFloat(max); } // Force a number between 0 and 1 function clamp01(val) { return Math.min(1, Math.max(0, val)); } // Parse a base-16 hex value into a base-10 integer function parseIntFromHex(val) { return parseInt(val, 16); } // Need to handle 1.0 as 100%, since once it is a number, there is no difference between it and 1 // function isOnePointZero(n) { return typeof n == "string" && n.indexOf(".") != -1 && parseFloat(n) === 1; } // Check to see if string passed in is a percentage function isPercentage(n) { return typeof n === "string" && n.indexOf("%") != -1; } // Force a hex value to have 2 characters function pad2(c) { return c.length == 1 ? "0" + c : "" + c; } // Replace a decimal with it's percentage value function convertToPercentage(n) { if (n <= 1) { n = n * 100 + "%"; } return n; } // Converts a decimal to a hex value function convertDecimalToHex(d) { return Math.round(parseFloat(d) * 255).toString(16); } // Converts a hex value to a decimal function convertHexToDecimal(h) { return parseIntFromHex(h) / 255; } var matchers = function () { // var CSS_INTEGER = "[-\\+]?\\d+%?"; // var CSS_NUMBER = "[-\\+]?\\d*\\.\\d+%?"; // Allow positive/negative integer/number. Don't capture the either/or, just the entire outcome. var CSS_UNIT = "(?:" + CSS_NUMBER + ")|(?:" + CSS_INTEGER + ")"; // Actual matching. // Parentheses and commas are optional, but not required. // Whitespace can take the place of commas or opening paren var PERMISSIVE_MATCH3 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; var PERMISSIVE_MATCH4 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; return { CSS_UNIT: new RegExp(CSS_UNIT), rgb: new RegExp("rgb" + PERMISSIVE_MATCH3), rgba: new RegExp("rgba" + PERMISSIVE_MATCH4), hsl: new RegExp("hsl" + PERMISSIVE_MATCH3), hsla: new RegExp("hsla" + PERMISSIVE_MATCH4), hsv: new RegExp("hsv" + PERMISSIVE_MATCH3), hsva: new RegExp("hsva" + PERMISSIVE_MATCH4), hex3: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex6: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/, hex4: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex8: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/ }; }(); // `isValidCSSUnit` // Take in a single string / number and check to see if it looks like a CSS unit // (see `matchers` above for definition). function isValidCSSUnit(color) { return !!matchers.CSS_UNIT.exec(color); } // `stringInputToObject` // Permissive string parsing. Take in a number of formats, and output an object // based on detected format. Returns `{ r, g, b }` or `{ h, s, l }` or `{ h, s, v}` function stringInputToObject(color) { color = color.replace(trimLeft, "").replace(trimRight, "").toLowerCase(); var named = false; if (names[color]) { color = names[color]; named = true; } else if (color == "transparent") { return { r: 0, g: 0, b: 0, a: 0, format: "name" }; } // Try to match string input using regular expressions. // Keep most of the number bounding out of this function - don't worry about [0,1] or [0,100] or [0,360] // Just return an object and let the conversion functions handle that. // This way the result will be the same whether the tinycolor is initialized with string or object. var match; if (match = matchers.rgb.exec(color)) { return { r: match[1], g: match[2], b: match[3] }; } if (match = matchers.rgba.exec(color)) { return { r: match[1], g: match[2], b: match[3], a: match[4] }; } if (match = matchers.hsl.exec(color)) { return { h: match[1], s: match[2], l: match[3] }; } if (match = matchers.hsla.exec(color)) { return { h: match[1], s: match[2], l: match[3], a: match[4] }; } if (match = matchers.hsv.exec(color)) { return { h: match[1], s: match[2], v: match[3] }; } if (match = matchers.hsva.exec(color)) { return { h: match[1], s: match[2], v: match[3], a: match[4] }; } if (match = matchers.hex8.exec(color)) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), a: convertHexToDecimal(match[4]), format: named ? "name" : "hex8" }; } if (match = matchers.hex6.exec(color)) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), format: named ? "name" : "hex" }; } if (match = matchers.hex4.exec(color)) { return { r: parseIntFromHex(match[1] + "" + match[1]), g: parseIntFromHex(match[2] + "" + match[2]), b: parseIntFromHex(match[3] + "" + match[3]), a: convertHexToDecimal(match[4] + "" + match[4]), format: named ? "name" : "hex8" }; } if (match = matchers.hex3.exec(color)) { return { r: parseIntFromHex(match[1] + "" + match[1]), g: parseIntFromHex(match[2] + "" + match[2]), b: parseIntFromHex(match[3] + "" + match[3]), format: named ? "name" : "hex" }; } return false; } function validateWCAG2Parms(parms) { // return valid WCAG2 parms for isReadable. // If input parms are invalid, return {"level":"AA", "size":"small"} var level, size; parms = parms || { level: "AA", size: "small" }; level = (parms.level || "AA").toUpperCase(); size = (parms.size || "small").toLowerCase(); if (level !== "AA" && level !== "AAA") { level = "AA"; } if (size !== "small" && size !== "large") { size = "small"; } return { level: level, size: size }; } function _callSuper(t, o, e) { return o = _getPrototypeOf$1(o), _possibleConstructorReturn(t, _isNativeReflectConstruct$1() ? Reflect.construct(o, e || [], _getPrototypeOf$1(t).constructor) : o.apply(t, e)); } function _construct$1(t, e, r) { if (_isNativeReflectConstruct$1()) return Reflect.construct.apply(null, arguments); var o = [null]; o.push.apply(o, e); var p = new (t.bind.apply(t, o))(); return r && _setPrototypeOf$1(p, r.prototype), p; } function _isNativeReflectConstruct$1() { try { var t = !Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); } catch (t) {} return (_isNativeReflectConstruct$1 = function () { return !!t; })(); } function _iterableToArrayLimit$1(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) return; f = !1; } else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0); } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return; } finally { if (o) throw n; } } return a; } } function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; } function _objectSpread2(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty$1(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } function _toPrimitive$1(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey$1(t) { var i = _toPrimitive$1(t, "string"); return "symbol" == typeof i ? i : String(i); } function _typeof(o) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof(o); } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey$1(descriptor.key), descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _defineProperty$1(obj, key, value) { key = _toPropertyKey$1(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); Object.defineProperty(subClass, "prototype", { writable: false }); if (superClass) _setPrototypeOf$1(subClass, superClass); } function _getPrototypeOf$1(o) { _getPrototypeOf$1 = Object.setPrototypeOf ? Object.getPrototypeOf.bind() : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf$1(o); } function _setPrototypeOf$1(o, p) { _setPrototypeOf$1 = Object.setPrototypeOf ? Object.setPrototypeOf.bind() : function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf$1(o, p); } function _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _assertThisInitialized$1(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized$1(self); } function _slicedToArray$1(arr, i) { return _arrayWithHoles$1(arr) || _iterableToArrayLimit$1(arr, i) || _unsupportedIterableToArray$1(arr, i) || _nonIterableRest$1(); } function _toConsumableArray$1(arr) { return _arrayWithoutHoles$1(arr) || _iterableToArray$1(arr) || _unsupportedIterableToArray$1(arr) || _nonIterableSpread$1(); } function _arrayWithoutHoles$1(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$1(arr); } function _arrayWithHoles$1(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$1(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$1(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$1(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$1(o, minLen); } function _arrayLikeToArray$1(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$1() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$1() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var materialDispose = function materialDispose(material) { if (material instanceof Array) { material.forEach(materialDispose); } else { if (material.map) { material.map.dispose(); } material.dispose(); } }; var deallocate = function deallocate(obj) { if (obj.geometry) { obj.geometry.dispose(); } if (obj.material) { materialDispose(obj.material); } if (obj.texture) { obj.texture.dispose(); } if (obj.children) { obj.children.forEach(deallocate); } }; var emptyObject = function emptyObject(obj) { while (obj.children.length) { var childObj = obj.children[0]; obj.remove(childObj); deallocate(childObj); } }; var _excluded = ["objFilter"]; function threeDigest(data, scene) { var _ref = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}, _ref$objFilter = _ref.objFilter, objFilter = _ref$objFilter === void 0 ? function () { return true; } : _ref$objFilter, options = _objectWithoutProperties(_ref, _excluded); return viewDigest(data, scene.children.filter(objFilter), function (obj) { return scene.add(obj); }, function (obj) { scene.remove(obj); emptyObject(obj); }, _objectSpread2({ objBindAttr: '__threeObj' }, options)); } var colorStr2Hex = function colorStr2Hex(str) { return isNaN(str) ? parseInt(tinycolor(str).toHex(), 16) : str; }; var colorAlpha = function colorAlpha(str) { return isNaN(str) ? tinycolor(str).getAlpha() : 1; }; var autoColorScale = ordinal(schemePaired); // Autoset attribute colorField by colorByAccessor property // If an object has already a color, don't set it // Objects can be nodes or links function autoColorObjects(objects, colorByAccessor, colorField) { if (!colorByAccessor || typeof colorField !== 'string') return; objects.filter(function (obj) { return !obj[colorField]; }).forEach(function (obj) { obj[colorField] = autoColorScale(colorByAccessor(obj)); }); } function getDagDepths (_ref, idAccessor) { var nodes = _ref.nodes, links = _ref.links; var _ref2 = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}, _ref2$nodeFilter = _ref2.nodeFilter, nodeFilter = _ref2$nodeFilter === void 0 ? function () { return true; } : _ref2$nodeFilter, _ref2$onLoopError = _ref2.onLoopError, onLoopError = _ref2$onLoopError === void 0 ? function (loopIds) { throw "Invalid DAG structure! Found cycle in node path: ".concat(loopIds.join(' -> '), "."); } : _ref2$onLoopError; // linked graph var graph = {}; nodes.forEach(function (node) { return graph[idAccessor(node)] = { data: node, out: [], depth: -1, skip: !nodeFilter(node) }; }); links.forEach(function (_ref3) { var source = _ref3.source, target = _ref3.target; var sourceId = getNodeId(source); var targetId = getNodeId(target); if (!graph.hasOwnProperty(sourceId)) throw "Missing source node with id: ".concat(sourceId); if (!graph.hasOwnProperty(targetId)) throw "Missing target node with id: ".concat(targetId); var sourceNode = graph[sourceId]; var targetNode = graph[targetId]; sourceNode.out.push(targetNode); function getNodeId(node) { return _typeof(node) === 'object' ? idAccessor(node) : node; } }); var foundLoops = []; traverse(Object.values(graph)); var nodeDepths = Object.assign.apply(Object, [{}].concat(_toConsumableArray$1(Object.entries(graph).filter(function (_ref4) { var _ref5 = _slicedToArray$1(_ref4, 2), node = _ref5[1]; return !node.skip; }).map(function (_ref6) { var _ref7 = _slicedToArray$1(_ref6, 2), id = _ref7[0], node = _ref7[1]; return _defineProperty$1({}, id, node.depth); })))); return nodeDepths; function traverse(nodes) { var nodeStack = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var currentDepth = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0; var _loop = function _loop() { var node = nodes[i]; if (nodeStack.indexOf(node) !== -1) { var loop = [].concat(_toConsumableArray$1(nodeStack.slice(nodeStack.indexOf(node))), [node]).map(function (d) { return idAccessor(d.data); }); if (!foundLoops.some(function (foundLoop) { return foundLoop.length === loop.length && foundLoop.every(function (id, idx) { return id === loop[idx]; }); })) { foundLoops.push(loop); onLoopError(loop); } return 1; // continue } if (currentDepth > node.depth) { // Don't unnecessarily revisit chunks of the graph node.depth = currentDepth; traverse(node.out, [].concat(_toConsumableArray$1(nodeStack), [node]), currentDepth + (node.skip ? 0 : 1)); } }; for (var i = 0, l = nodes.length; i < l; i++) { if (_loop()) continue; } } } var three$1$1 = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists : { Group: Group$1, Mesh: Mesh, MeshLambertMaterial: MeshLambertMaterial, Color: Color, BufferGeometry: BufferGeometry, BufferAttribute: BufferAttribute, Matrix4: Matrix4, Vector3: Vector3, SphereGeometry: SphereGeometry, CylinderGeometry: CylinderGeometry, TubeGeometry: TubeGeometry, ConeGeometry: ConeGeometry, Line: Line, LineBasicMaterial: LineBasicMaterial, QuadraticBezierCurve3: QuadraticBezierCurve3, CubicBezierCurve3: CubicBezierCurve3, Box3: Box3 }; var ngraph = { graph: graph, forcelayout: forcelayout }; // var DAG_LEVEL_NODE_RATIO = 2; // support multiple method names for backwards threejs compatibility var setAttributeFn = new three$1$1.BufferGeometry().setAttribute ? 'setAttribute' : 'addAttribute'; var applyMatrix4Fn = new three$1$1.BufferGeometry().applyMatrix4 ? 'applyMatrix4' : 'applyMatrix'; var ForceGraph = index$2({ props: { jsonUrl: { onChange: function onChange(jsonUrl, state) { var _this = this; if (jsonUrl && !state.fetchingJson) { // Load data asynchronously state.fetchingJson = true; state.onLoading(); fetch(jsonUrl).then(function (r) { return r.json(); }).then(function (json) { state.fetchingJson = false; state.onFinishLoading(json); _this.graphData(json); }); } }, triggerUpdate: false }, graphData: { "default": { nodes: [], links: [] }, onChange: function onChange(graphData, state) { state.engineRunning = false; // Pause simulation immediately } }, numDimensions: { "default": 3, onChange: function onChange(numDim, state) { var chargeForce = state.d3ForceLayout.force('charge'); // Increase repulsion on 3D mode for improved spatial separation if (chargeForce) { chargeForce.strength(numDim > 2 ? -60 : -30); } if (numDim < 3) { eraseDimension(state.graphData.nodes, 'z'); } if (numDim < 2) { eraseDimension(state.graphData.nodes, 'y'); } function eraseDimension(nodes, dim) { nodes.forEach(function (d) { delete d[dim]; // position delete d["v".concat(dim)]; // velocity }); } } }, dagMode: { onChange: function onChange(dagMode, state) { // td, bu, lr, rl, zin, zout, radialin, radialout !dagMode && state.forceEngine === 'd3' && (state.graphData.nodes || []).forEach(function (n) { return n.fx = n.fy = n.fz = undefined; }); // unfix nodes when disabling dag mode } }, dagLevelDistance: {}, dagNodeFilter: { "default": function _default(node) { return true; } }, onDagError: { triggerUpdate: false }, nodeRelSize: { "default": 4 }, // volume per val unit nodeId: { "default": 'id' }, nodeVal: { "default": 'val' }, nodeResolution: { "default": 8 }, // how many slice segments in the sphere's circumference nodeColor: { "default": 'color' }, nodeAutoColorBy: {}, nodeOpacity: { "default": 0.75 }, nodeVisibility: { "default": true }, nodeThreeObject: {}, nodeThreeObjectExtend: { "default": false }, nodePositionUpdate: { triggerUpdate: false }, // custom function to call for updating the node's position. Signature: (threeObj, { x, y, z}, node). If the function returns a truthy value, the regular node position update will not run. linkSource: { "default": 'source' }, linkTarget: { "default": 'target' }, linkVisibility: { "default": true }, linkColor: { "default": 'color' }, linkAutoColorBy: {}, linkOpacity: { "default": 0.2 }, linkWidth: {}, // Rounded to nearest decimal. For falsy values use dimensionless line with 1px regardless of distance. linkResolution: { "default": 6 }, // how many radial segments in each line tube's geometry linkCurvature: { "default": 0, triggerUpdate: false }, // line curvature radius (0: straight, 1: semi-circle) linkCurveRotation: { "default": 0, triggerUpdate: false }, // line curve rotation along the line axis (0: interection with XY plane, PI: upside down) linkMaterial: {}, linkThreeObject: {}, linkThreeObjectExtend: { "default": false }, linkPositionUpdate: { triggerUpdate: false }, // custom function to call for updating the link's position. Signature: (threeObj, { start: { x, y, z}, end: { x, y, z }}, link). If the function returns a truthy value, the regular link position update will not run. linkDirectionalArrowLength: { "default": 0 }, linkDirectionalArrowColor: {}, linkDirectionalArrowRelPos: { "default": 0.5, triggerUpdate: false }, // value between 0<>1 indicating the relative pos along the (exposed) line linkDirectionalArrowResolution: { "default": 8 }, // how many slice segments in the arrow's conic circumference linkDirectionalParticles: { "default": 0 }, // animate photons travelling in the link direction linkDirectionalParticleSpeed: { "default": 0.01, triggerUpdate: false }, // in link length ratio per frame linkDirectionalParticleWidth: { "default": 0.5 }, linkDirectionalParticleColor: {}, linkDirectionalParticleResolution: { "default": 4 }, // how many slice segments in the particle sphere's circumference forceEngine: { "default": 'd3' }, // d3 or ngraph d3AlphaMin: { "default": 0 }, d3AlphaDecay: { "default": 0.0228, triggerUpdate: false, onChange: function onChange(alphaDecay, state) { state.d3ForceLayout.alphaDecay(alphaDecay); } }, d3AlphaTarget: { "default": 0, triggerUpdate: false, onChange: function onChange(alphaTarget, state) { state.d3ForceLayout.alphaTarget(alphaTarget); } }, d3VelocityDecay: { "default": 0.4, triggerUpdate: false, onChange: function onChange(velocityDecay, state) { state.d3ForceLayout.velocityDecay(velocityDecay); } }, ngraphPhysics: { "default": { // defaults from https://github.com/anvaka/ngraph.physics.simulator/blob/master/index.js timeStep: 20, gravity: -1.2, theta: 0.8, springLength: 30, springCoefficient: 0.0008, dragCoefficient: 0.02 } }, warmupTicks: { "default": 0, triggerUpdate: false }, // how many times to tick the force engine at init before starting to render cooldownTicks: { "default": Infinity, triggerUpdate: false }, cooldownTime: { "default": 15000, triggerUpdate: false }, // ms onLoading: { "default": function _default() {}, triggerUpdate: false }, onFinishLoading: { "default": function _default() {}, triggerUpdate: false }, onUpdate: { "default": function _default() {}, triggerUpdate: false }, onFinishUpdate: { "default": function _default() {}, triggerUpdate: false }, onEngineTick: { "default": function _default() {}, triggerUpdate: false }, onEngineStop: { "default": function _default() {}, triggerUpdate: false } }, methods: { refresh: function refresh(state) { state._flushObjects = true; state._rerender(); return this; }, // Expose d3 forces for external manipulation d3Force: function d3Force(state, forceName, forceFn) { if (forceFn === undefined) { return state.d3ForceLayout.force(forceName); // Force getter } state.d3ForceLayout.force(forceName, forceFn); // Force setter return this; }, d3ReheatSimulation: function d3ReheatSimulation(state) { state.d3ForceLayout.alpha(1); this.resetCountdown(); return this; }, // reset cooldown state resetCountdown: function resetCountdown(state) { state.cntTicks = 0; state.startTickTime = new Date(); state.engineRunning = true; return this; }, tickFrame: function tickFrame(state) { var isD3Sim = state.forceEngine !== 'ngraph'; if (state.engineRunning) { layoutTick(); } updateArrows(); updatePhotons(); return this; // function layoutTick() { if (++state.cntTicks > state.cooldownTicks || new Date() - state.startTickTime > state.cooldownTime || isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin) { state.engineRunning = false; // Stop ticking graph state.onEngineStop(); } else { state.layout[isD3Sim ? 'tick' : 'step'](); // Tick it state.onEngineTick(); } var nodeThreeObjectExtendAccessor = index$1(state.nodeThreeObjectExtend); // Update nodes position state.graphData.nodes.forEach(function (node) { var obj = node.__threeObj; if (!obj) return; var pos = isD3Sim ? node : state.layout.getNodePosition(node[state.nodeId]); var extendedObj = nodeThreeObjectExtendAccessor(node); if (!state.nodePositionUpdate || !state.nodePositionUpdate(extendedObj ? obj.children[0] : obj, { x: pos.x, y: pos.y, z: pos.z }, node) // pass child custom object if extending the default || extendedObj) { obj.position.x = pos.x; obj.position.y = pos.y || 0; obj.position.z = pos.z || 0; } }); // Update links position var linkWidthAccessor = index$1(state.linkWidth); var linkCurvatureAccessor = index$1(state.linkCurvature); var linkCurveRotationAccessor = index$1(state.linkCurveRotation); var linkThreeObjectExtendAccessor = index$1(state.linkThreeObjectExtend); state.graphData.links.forEach(function (link) { var lineObj = link.__lineObj; if (!lineObj) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link calcLinkCurve(link); // calculate link curve for all links, including custom replaced, so it can be used in directional functionality var extendedObj = linkThreeObjectExtendAccessor(link); if (state.linkPositionUpdate && state.linkPositionUpdate(extendedObj ? lineObj.children[1] : lineObj, // pass child custom object if extending the default { start: { x: start.x, y: start.y, z: start.z }, end: { x: end.x, y: end.y, z: end.z } }, link) && !extendedObj) { // exit if successfully custom updated position of non-extended obj return; } var curveResolution = 30; // # line segments var curve = link.__curve; // select default line obj if it's an extended group var line = lineObj.children.length ? lineObj.children[0] : lineObj; if (line.type === 'Line') { // Update line geometry if (!curve) { // straight line var linePos = line.geometry.getAttribute('position'); if (!linePos || !linePos.array || linePos.array.length !== 6) { line.geometry[setAttributeFn]('position', linePos = new three$1$1.BufferAttribute(new Float32Array(2 * 3), 3)); } linePos.array[0] = start.x; linePos.array[1] = start.y || 0; linePos.array[2] = start.z || 0; linePos.array[3] = end.x; linePos.array[4] = end.y || 0; linePos.array[5] = end.z || 0; linePos.needsUpdate = true; } else { // bezier curve line line.geometry.setFromPoints(curve.getPoints(curveResolution)); } line.geometry.computeBoundingSphere(); } else if (line.type === 'Mesh') { // Update cylinder geometry if (!curve) { // straight tube if (!line.geometry.type.match(/^Cylinder(Buffer)?Geometry$/)) { var linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10; var r = linkWidth / 2; var geometry = new three$1$1.CylinderGeometry(r, r, 1, state.linkResolution, 1, false); geometry[applyMatrix4Fn](new three$1$1.Matrix4().makeTranslation(0, 1 / 2, 0)); geometry[applyMatrix4Fn](new three$1$1.Matrix4().makeRotationX(Math.PI / 2)); line.geometry.dispose(); line.geometry = geometry; } var vStart = new three$1$1.Vector3(start.x, start.y || 0, start.z || 0); var vEnd = new three$1$1.Vector3(end.x, end.y || 0, end.z || 0); var distance = vStart.distanceTo(vEnd); line.position.x = vStart.x; line.position.y = vStart.y; line.position.z = vStart.z; line.scale.z = distance; line.parent.localToWorld(vEnd); // lookAt requires world coords line.lookAt(vEnd); } else { // curved tube if (!line.geometry.type.match(/^Tube(Buffer)?Geometry$/)) { // reset object positioning line.position.set(0, 0, 0); line.rotation.set(0, 0, 0); line.scale.set(1, 1, 1); } var _linkWidth = Math.ceil(linkWidthAccessor(link) * 10) / 10; var _r = _linkWidth / 2; var _geometry = new three$1$1.TubeGeometry(curve, curveResolution, _r, state.linkResolution, false); line.geometry.dispose(); line.geometry = _geometry; } } }); // function calcLinkCurve(link) { var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var curvature = linkCurvatureAccessor(link); if (!curvature) { link.__curve = null; // Straight line } else { // bezier curve line (only for line types) var vStart = new three$1$1.Vector3(start.x, start.y || 0, start.z || 0); var vEnd = new three$1$1.Vector3(end.x, end.y || 0, end.z || 0); var l = vStart.distanceTo(vEnd); // line length var curve; var curveRotation = linkCurveRotationAccessor(link); if (l > 0) { var dx = end.x - start.x; var dy = end.y - start.y || 0; var vLine = new three$1$1.Vector3().subVectors(vEnd, vStart); var cp = vLine.clone().multiplyScalar(curvature).cross(dx !== 0 || dy !== 0 ? new three$1$1.Vector3(0, 0, 1) : new three$1$1.Vector3(0, 1, 0)) // avoid cross-product of parallel vectors (prefer Z, fallback to Y) .applyAxisAngle(vLine.normalize(), curveRotation) // rotate along line axis according to linkCurveRotation .add(new three$1$1.Vector3().addVectors(vStart, vEnd).divideScalar(2)); curve = new three$1$1.QuadraticBezierCurve3(vStart, cp, vEnd); } else { // Same point, draw a loop var d = curvature * 70; var endAngle = -curveRotation; // Rotate clockwise (from Z angle perspective) var startAngle = endAngle + Math.PI / 2; curve = new three$1$1.CubicBezierCurve3(vStart, new three$1$1.Vector3(d * Math.cos(startAngle), d * Math.sin(startAngle), 0).add(vStart), new three$1$1.Vector3(d * Math.cos(endAngle), d * Math.sin(endAngle), 0).add(vStart), vEnd); } link.__curve = curve; } } } function updateArrows() { // update link arrow position var arrowRelPosAccessor = index$1(state.linkDirectionalArrowRelPos); var arrowLengthAccessor = index$1(state.linkDirectionalArrowLength); var nodeValAccessor = index$1(state.nodeVal); state.graphData.links.forEach(function (link) { var arrowObj = link.__arrowObj; if (!arrowObj) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var startR = Math.cbrt(Math.max(0, nodeValAccessor(start) || 1)) * state.nodeRelSize; var endR = Math.cbrt(Math.max(0, nodeValAccessor(end) || 1)) * state.nodeRelSize; var arrowLength = arrowLengthAccessor(link); var arrowRelPos = arrowRelPosAccessor(link); var getPosAlongLine = link.__curve ? function (t) { return link.__curve.getPoint(t); } // interpolate along bezier curve : function (t) { // straight line: interpolate linearly var iplt = function iplt(dim, start, end, t) { return start[dim] + (end[dim] - start[dim]) * t || 0; }; return { x: iplt('x', start, end, t), y: iplt('y', start, end, t), z: iplt('z', start, end, t) }; }; var lineLen = link.__curve ? link.__curve.getLength() : Math.sqrt(['x', 'y', 'z'].map(function (dim) { return Math.pow((end[dim] || 0) - (start[dim] || 0), 2); }).reduce(function (acc, v) { return acc + v; }, 0)); var posAlongLine = startR + arrowLength + (lineLen - startR - endR - arrowLength) * arrowRelPos; var arrowHead = getPosAlongLine(posAlongLine / lineLen); var arrowTail = getPosAlongLine((posAlongLine - arrowLength) / lineLen); ['x', 'y', 'z'].forEach(function (dim) { return arrowObj.position[dim] = arrowTail[dim]; }); var headVec = _construct$1(three$1$1.Vector3, _toConsumableArray$1(['x', 'y', 'z'].map(function (c) { return arrowHead[c]; }))); arrowObj.parent.localToWorld(headVec); // lookAt requires world coords arrowObj.lookAt(headVec); }); } function updatePhotons() { // update link particle positions var particleSpeedAccessor = index$1(state.linkDirectionalParticleSpeed); state.graphData.links.forEach(function (link) { var cyclePhotons = link.__photonsObj && link.__photonsObj.children; var singleHopPhotons = link.__singleHopPhotonsObj && link.__singleHopPhotonsObj.children; if ((!singleHopPhotons || !singleHopPhotons.length) && (!cyclePhotons || !cyclePhotons.length)) return; var pos = isD3Sim ? link : state.layout.getLinkPosition(state.layout.graph.getLink(link.source, link.target).id); var start = pos[isD3Sim ? 'source' : 'from']; var end = pos[isD3Sim ? 'target' : 'to']; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var particleSpeed = particleSpeedAccessor(link); var getPhotonPos = link.__curve ? function (t) { return link.__curve.getPoint(t); } // interpolate along bezier curve : function (t) { // straight line: interpolate linearly var iplt = function iplt(dim, start, end, t) { return start[dim] + (end[dim] - start[dim]) * t || 0; }; return { x: iplt('x', start, end, t), y: iplt('y', start, end, t), z: iplt('z', start, end, t) }; }; var photons = [].concat(_toConsumableArray$1(cyclePhotons || []), _toConsumableArray$1(singleHopPhotons || [])); photons.forEach(function (photon, idx) { var singleHop = photon.parent.__linkThreeObjType === 'singleHopPhotons'; if (!photon.hasOwnProperty('__progressRatio')) { photon.__progressRatio = singleHop ? 0 : idx / cyclePhotons.length; } photon.__progressRatio += particleSpeed; if (photon.__progressRatio >= 1) { if (!singleHop) { photon.__progressRatio = photon.__progressRatio % 1; } else { // remove particle photon.parent.remove(photon); emptyObject(photon); return; } } var photonPosRatio = photon.__progressRatio; var pos = getPhotonPos(photonPosRatio); ['x', 'y', 'z'].forEach(function (dim) { return photon.position[dim] = pos[dim]; }); }); }); } }, emitParticle: function emitParticle(state, link) { if (link && state.graphData.links.includes(link)) { if (!link.__singleHopPhotonsObj) { var obj = new three$1$1.Group(); obj.__linkThreeObjType = 'singleHopPhotons'; link.__singleHopPhotonsObj = obj; state.graphScene.add(obj); } var particleWidthAccessor = index$1(state.linkDirectionalParticleWidth); var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2; var numSegments = state.linkDirectionalParticleResolution; var particleGeometry = new three$1$1.SphereGeometry(photonR, numSegments, numSegments); var linkColorAccessor = index$1(state.linkColor); var particleColorAccessor = index$1(state.linkDirectionalParticleColor); var photonColor = particleColorAccessor(link) || linkColorAccessor(link) || '#f0f0f0'; var materialColor = new three$1$1.Color(colorStr2Hex(photonColor)); var opacity = state.linkOpacity * 3; var particleMaterial = new three$1$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); // add a single hop particle link.__singleHopPhotonsObj.add(new three$1$1.Mesh(particleGeometry, particleMaterial)); } return this; }, getGraphBbox: function getGraphBbox(state) { var nodeFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () { return true; }; if (!state.initialised) return null; // recursively collect all nested geometries bboxes var bboxes = function getBboxes(obj) { var bboxes = []; if (obj.geometry) { obj.geometry.computeBoundingBox(); var box = new three$1$1.Box3(); box.copy(obj.geometry.boundingBox).applyMatrix4(obj.matrixWorld); bboxes.push(box); } return bboxes.concat.apply(bboxes, _toConsumableArray$1((obj.children || []).filter(function (obj) { return !obj.hasOwnProperty('__graphObjType') || obj.__graphObjType === 'node' && nodeFilter(obj.__data); } // exclude filtered out nodes ).map(getBboxes))); }(state.graphScene); if (!bboxes.length) return null; // extract global x,y,z min/max return Object.assign.apply(Object, _toConsumableArray$1(['x', 'y', 'z'].map(function (c) { return _defineProperty$1({}, c, [min(bboxes, function (bb) { return bb.min[c]; }), max(bboxes, function (bb) { return bb.max[c]; })]); }))); } }, stateInit: function stateInit() { return { d3ForceLayout: forceSimulation().force('link', forceLink()).force('charge', forceManyBody()).force('center', forceCenter()).force('dagRadial', null).stop(), engineRunning: false }; }, init: function init(threeObj, state) { // Main three object to manipulate state.graphScene = threeObj; }, update: function update(state, changedProps) { var hasAnyPropChanged = function hasAnyPropChanged(propList) { return propList.some(function (p) { return changedProps.hasOwnProperty(p); }); }; state.engineRunning = false; // pause simulation state.onUpdate(); if (state.nodeAutoColorBy !== null && hasAnyPropChanged(['nodeAutoColorBy', 'graphData', 'nodeColor'])) { // Auto add color to uncolored nodes autoColorObjects(state.graphData.nodes, index$1(state.nodeAutoColorBy), state.nodeColor); } if (state.linkAutoColorBy !== null && hasAnyPropChanged(['linkAutoColorBy', 'graphData', 'linkColor'])) { // Auto add color to uncolored links autoColorObjects(state.graphData.links, index$1(state.linkAutoColorBy), state.linkColor); } // Digest nodes WebGL objects if (state._flushObjects || hasAnyPropChanged(['graphData', 'nodeThreeObject', 'nodeThreeObjectExtend', 'nodeVal', 'nodeColor', 'nodeVisibility', 'nodeRelSize', 'nodeResolution', 'nodeOpacity'])) { var customObjectAccessor = index$1(state.nodeThreeObject); var customObjectExtendAccessor = index$1(state.nodeThreeObjectExtend); var valAccessor = index$1(state.nodeVal); var colorAccessor = index$1(state.nodeColor); var visibilityAccessor = index$1(state.nodeVisibility); var sphereGeometries = {}; // indexed by node value var sphereMaterials = {}; // indexed by color threeDigest(state.graphData.nodes.filter(visibilityAccessor), state.graphScene, { purge: state._flushObjects || hasAnyPropChanged([ // recreate objects if any of these props have changed 'nodeThreeObject', 'nodeThreeObjectExtend']), objFilter: function objFilter(obj) { return obj.__graphObjType === 'node'; }, createObj: function createObj(node) { var customObj = customObjectAccessor(node); var extendObj = customObjectExtendAccessor(node); if (customObj && state.nodeThreeObject === customObj) { // clone object if it's a shared object among all nodes customObj = customObj.clone(); } var obj; if (customObj && !extendObj) { obj = customObj; } else { // Add default object (sphere mesh) obj = new three$1$1.Mesh(); obj.__graphDefaultObj = true; if (customObj && extendObj) { obj.add(customObj); // extend default with custom } } obj.__graphObjType = 'node'; // Add object type return obj; }, updateObj: function updateObj(obj, node) { if (obj.__graphDefaultObj) { // bypass internal updates for custom node objects var val = valAccessor(node) || 1; var radius = Math.cbrt(val) * state.nodeRelSize; var numSegments = state.nodeResolution; if (!obj.geometry.type.match(/^Sphere(Buffer)?Geometry$/) || obj.geometry.parameters.radius !== radius || obj.geometry.parameters.widthSegments !== numSegments) { if (!sphereGeometries.hasOwnProperty(val)) { sphereGeometries[val] = new three$1$1.SphereGeometry(radius, numSegments, numSegments); } obj.geometry.dispose(); obj.geometry = sphereGeometries[val]; } var color = colorAccessor(node); var materialColor = new three$1$1.Color(colorStr2Hex(color || '#ffffaa')); var opacity = state.nodeOpacity * colorAlpha(color); if (obj.material.type !== 'MeshLambertMaterial' || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) { if (!sphereMaterials.hasOwnProperty(color)) { sphereMaterials[color] = new three$1$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); } obj.material.dispose(); obj.material = sphereMaterials[color]; } } } }); } // Digest links WebGL objects if (state._flushObjects || hasAnyPropChanged(['graphData', 'linkThreeObject', 'linkThreeObjectExtend', 'linkMaterial', 'linkColor', 'linkWidth', 'linkVisibility', 'linkResolution', 'linkOpacity', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowResolution', 'linkDirectionalParticles', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'linkDirectionalParticleResolution'])) { var _customObjectAccessor = index$1(state.linkThreeObject); var _customObjectExtendAccessor = index$1(state.linkThreeObjectExtend); var customMaterialAccessor = index$1(state.linkMaterial); var _visibilityAccessor = index$1(state.linkVisibility); var _colorAccessor = index$1(state.linkColor); var widthAccessor = index$1(state.linkWidth); var cylinderGeometries = {}; // indexed by link width var lambertLineMaterials = {}; // for cylinder objects, indexed by link color var basicLineMaterials = {}; // for line objects, indexed by link color var visibleLinks = state.graphData.links.filter(_visibilityAccessor); // lines digest cycle threeDigest(visibleLinks, state.graphScene, { objBindAttr: '__lineObj', purge: state._flushObjects || hasAnyPropChanged([ // recreate objects if any of these props have changed 'linkThreeObject', 'linkThreeObjectExtend', 'linkWidth']), objFilter: function objFilter(obj) { return obj.__graphObjType === 'link'; }, exitObj: function exitObj(obj) { // remove trailing single photons var singlePhotonsObj = obj.__data && obj.__data.__singleHopPhotonsObj; if (singlePhotonsObj) { singlePhotonsObj.parent.remove(singlePhotonsObj); emptyObject(singlePhotonsObj); delete obj.__data.__singleHopPhotonsObj; } }, createObj: function createObj(link) { var customObj = _customObjectAccessor(link); var extendObj = _customObjectExtendAccessor(link); if (customObj && state.linkThreeObject === customObj) { // clone object if it's a shared object among all links customObj = customObj.clone(); } var defaultObj; if (!customObj || extendObj) { // construct default line obj var useCylinder = !!widthAccessor(link); if (useCylinder) { defaultObj = new three$1$1.Mesh(); } else { // Use plain line (constant width) var lineGeometry = new three$1$1.BufferGeometry(); lineGeometry[setAttributeFn]('position', new three$1$1.BufferAttribute(new Float32Array(2 * 3), 3)); defaultObj = new three$1$1.Line(lineGeometry); } } var obj; if (!customObj) { obj = defaultObj; obj.__graphDefaultObj = true; } else { if (!extendObj) { // use custom object obj = customObj; } else { // extend default with custom in a group obj = new three$1$1.Group(); obj.__graphDefaultObj = true; obj.add(defaultObj); obj.add(customObj); } } obj.renderOrder = 10; // Prevent visual glitches of dark lines on top of nodes by rendering them last obj.__graphObjType = 'link'; // Add object type return obj; }, updateObj: function updateObj(updObj, link) { if (updObj.__graphDefaultObj) { // bypass internal updates for custom link objects // select default object if it's an extended group var obj = updObj.children.length ? updObj.children[0] : updObj; var linkWidth = Math.ceil(widthAccessor(link) * 10) / 10; var useCylinder = !!linkWidth; if (useCylinder) { var r = linkWidth / 2; var numSegments = state.linkResolution; if (!obj.geometry.type.match(/^Cylinder(Buffer)?Geometry$/) || obj.geometry.parameters.radiusTop !== r || obj.geometry.parameters.radialSegments !== numSegments) { if (!cylinderGeometries.hasOwnProperty(linkWidth)) { var geometry = new three$1$1.CylinderGeometry(r, r, 1, numSegments, 1, false); geometry[applyMatrix4Fn](new three$1$1.Matrix4().makeTranslation(0, 1 / 2, 0)); geometry[applyMatrix4Fn](new three$1$1.Matrix4().makeRotationX(Math.PI / 2)); cylinderGeometries[linkWidth] = geometry; } obj.geometry.dispose(); obj.geometry = cylinderGeometries[linkWidth]; } } var customMaterial = customMaterialAccessor(link); if (customMaterial) { obj.material = customMaterial; } else { var color = _colorAccessor(link); var materialColor = new three$1$1.Color(colorStr2Hex(color || '#f0f0f0')); var opacity = state.linkOpacity * colorAlpha(color); var materialType = useCylinder ? 'MeshLambertMaterial' : 'LineBasicMaterial'; if (obj.material.type !== materialType || !obj.material.color.equals(materialColor) || obj.material.opacity !== opacity) { var lineMaterials = useCylinder ? lambertLineMaterials : basicLineMaterials; if (!lineMaterials.hasOwnProperty(color)) { lineMaterials[color] = new three$1$1[materialType]({ color: materialColor, transparent: opacity < 1, opacity: opacity, depthWrite: opacity >= 1 // Prevent transparency issues }); } obj.material.dispose(); obj.material = lineMaterials[color]; } } } } }); // Arrows digest cycle if (state.linkDirectionalArrowLength || changedProps.hasOwnProperty('linkDirectionalArrowLength')) { var arrowLengthAccessor = index$1(state.linkDirectionalArrowLength); var arrowColorAccessor = index$1(state.linkDirectionalArrowColor); threeDigest(visibleLinks.filter(arrowLengthAccessor), state.graphScene, { objBindAttr: '__arrowObj', objFilter: function objFilter(obj) { return obj.__linkThreeObjType === 'arrow'; }, createObj: function createObj() { var obj = new three$1$1.Mesh(undefined, new three$1$1.MeshLambertMaterial({ transparent: true })); obj.__linkThreeObjType = 'arrow'; // Add object type return obj; }, updateObj: function updateObj(obj, link) { var arrowLength = arrowLengthAccessor(link); var numSegments = state.linkDirectionalArrowResolution; if (!obj.geometry.type.match(/^Cone(Buffer)?Geometry$/) || obj.geometry.parameters.height !== arrowLength || obj.geometry.parameters.radialSegments !== numSegments) { var coneGeometry = new three$1$1.ConeGeometry(arrowLength * 0.25, arrowLength, numSegments); // Correct orientation coneGeometry.translate(0, arrowLength / 2, 0); coneGeometry.rotateX(Math.PI / 2); obj.geometry.dispose(); obj.geometry = coneGeometry; } var arrowColor = arrowColorAccessor(link) || _colorAccessor(link) || '#f0f0f0'; obj.material.color = new three$1$1.Color(colorStr2Hex(arrowColor)); obj.material.opacity = state.linkOpacity * 3 * colorAlpha(arrowColor); } }); } // Photon particles digest cycle if (state.linkDirectionalParticles || changedProps.hasOwnProperty('linkDirectionalParticles')) { var particlesAccessor = index$1(state.linkDirectionalParticles); var particleWidthAccessor = index$1(state.linkDirectionalParticleWidth); var particleColorAccessor = index$1(state.linkDirectionalParticleColor); var particleMaterials = {}; // indexed by link color var particleGeometries = {}; // indexed by particle width threeDigest(visibleLinks.filter(particlesAccessor), state.graphScene, { objBindAttr: '__photonsObj', objFilter: function objFilter(obj) { return obj.__linkThreeObjType === 'photons'; }, createObj: function createObj() { var obj = new three$1$1.Group(); obj.__linkThreeObjType = 'photons'; // Add object type return obj; }, updateObj: function updateObj(obj, link) { var numPhotons = Math.round(Math.abs(particlesAccessor(link))); var curPhoton = !!obj.children.length && obj.children[0]; var photonR = Math.ceil(particleWidthAccessor(link) * 10) / 10 / 2; var numSegments = state.linkDirectionalParticleResolution; var particleGeometry; if (curPhoton && curPhoton.geometry.parameters.radius === photonR && curPhoton.geometry.parameters.widthSegments === numSegments) { particleGeometry = curPhoton.geometry; } else { if (!particleGeometries.hasOwnProperty(photonR)) { particleGeometries[photonR] = new three$1$1.SphereGeometry(photonR, numSegments, numSegments); } particleGeometry = particleGeometries[photonR]; curPhoton && curPhoton.geometry.dispose(); } var photonColor = particleColorAccessor(link) || _colorAccessor(link) || '#f0f0f0'; var materialColor = new three$1$1.Color(colorStr2Hex(photonColor)); var opacity = state.linkOpacity * 3; var particleMaterial; if (curPhoton && curPhoton.material.color.equals(materialColor) && curPhoton.material.opacity === opacity) { particleMaterial = curPhoton.material; } else { if (!particleMaterials.hasOwnProperty(photonColor)) { particleMaterials[photonColor] = new three$1$1.MeshLambertMaterial({ color: materialColor, transparent: true, opacity: opacity }); } particleMaterial = particleMaterials[photonColor]; curPhoton && curPhoton.material.dispose(); } // digest cycle for each photon threeDigest(_toConsumableArray$1(new Array(numPhotons)).map(function (_, idx) { return { idx: idx }; }), obj, { idAccessor: function idAccessor(d) { return d.idx; }, createObj: function createObj() { return new three$1$1.Mesh(particleGeometry, particleMaterial); }, updateObj: function updateObj(obj) { obj.geometry = particleGeometry; obj.material = particleMaterial; } }); } }); } } state._flushObjects = false; // reset objects refresh flag // simulation engine if (hasAnyPropChanged(['graphData', 'nodeId', 'linkSource', 'linkTarget', 'numDimensions', 'forceEngine', 'dagMode', 'dagNodeFilter', 'dagLevelDistance'])) { state.engineRunning = false; // Pause simulation // parse links state.graphData.links.forEach(function (link) { link.source = link[state.linkSource]; link.target = link[state.linkTarget]; }); // Feed data to force-directed layout var isD3Sim = state.forceEngine !== 'ngraph'; var layout; if (isD3Sim) { // D3-force (layout = state.d3ForceLayout).stop().alpha(1) // re-heat the simulation .numDimensions(state.numDimensions).nodes(state.graphData.nodes); // add links (if link force is still active) var linkForce = state.d3ForceLayout.force('link'); if (linkForce) { linkForce.id(function (d) { return d[state.nodeId]; }).links(state.graphData.links); } // setup dag force constraints var nodeDepths = state.dagMode && getDagDepths(state.graphData, function (node) { return node[state.nodeId]; }, { nodeFilter: state.dagNodeFilter, onLoopError: state.onDagError || undefined }); var maxDepth = Math.max.apply(Math, _toConsumableArray$1(Object.values(nodeDepths || []))); var dagLevelDistance = state.dagLevelDistance || state.graphData.nodes.length / (maxDepth || 1) * DAG_LEVEL_NODE_RATIO * (['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? 0.7 : 1); // Fix nodes to x,y,z for dag mode if (state.dagMode) { var getFFn = function getFFn(fix, invert) { return function (node) { return !fix ? undefined : (nodeDepths[node[state.nodeId]] - maxDepth / 2) * dagLevelDistance * (invert ? -1 : 1); }; }; var fxFn = getFFn(['lr', 'rl'].indexOf(state.dagMode) !== -1, state.dagMode === 'rl'); var fyFn = getFFn(['td', 'bu'].indexOf(state.dagMode) !== -1, state.dagMode === 'td'); var fzFn = getFFn(['zin', 'zout'].indexOf(state.dagMode) !== -1, state.dagMode === 'zout'); state.graphData.nodes.filter(state.dagNodeFilter).forEach(function (node) { node.fx = fxFn(node); node.fy = fyFn(node); node.fz = fzFn(node); }); } // Use radial force for radial dags state.d3ForceLayout.force('dagRadial', ['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? forceRadial(function (node) { var nodeDepth = nodeDepths[node[state.nodeId]] || -1; return (state.dagMode === 'radialin' ? maxDepth - nodeDepth : nodeDepth) * dagLevelDistance; }).strength(function (node) { return state.dagNodeFilter(node) ? 1 : 0; }) : null); } else { // ngraph var _graph = ngraph.graph(); state.graphData.nodes.forEach(function (node) { _graph.addNode(node[state.nodeId]); }); state.graphData.links.forEach(function (link) { _graph.addLink(link.source, link.target); }); layout = ngraph.forcelayout(_graph, _objectSpread2({ dimensions: state.numDimensions }, state.ngraphPhysics)); layout.graph = _graph; // Attach graph reference to layout } for (var i = 0; i < state.warmupTicks && !(isD3Sim && state.d3AlphaMin > 0 && state.d3ForceLayout.alpha() < state.d3AlphaMin); i++) { layout[isD3Sim ? "tick" : "step"](); } // Initial ticks before starting to render state.layout = layout; this.resetCountdown(); } state.engineRunning = true; // resume simulation state.onFinishUpdate(); } }); function fromKapsule (kapsule) { var baseClass = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : Object; var initKapsuleWithSelf = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : false; var FromKapsule = /*#__PURE__*/function (_baseClass) { _inherits(FromKapsule, _baseClass); function FromKapsule() { var _this; _classCallCheck(this, FromKapsule); for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } _this = _callSuper(this, FromKapsule, [].concat(args)); _this.__kapsuleInstance = kapsule().apply(void 0, [].concat(_toConsumableArray$1(initKapsuleWithSelf ? [_assertThisInitialized$1(_this)] : []), args)); return _this; } return _createClass(FromKapsule); }(baseClass); // attach kapsule props/methods to class prototype Object.keys(kapsule()).forEach(function (m) { return FromKapsule.prototype[m] = function () { var _this$__kapsuleInstan; var returnVal = (_this$__kapsuleInstan = this.__kapsuleInstance)[m].apply(_this$__kapsuleInstan, arguments); return returnVal === this.__kapsuleInstance ? this // chain based on this class, not the kapsule obj : returnVal; }; }); return FromKapsule; } var three$2 = window.THREE ? window.THREE : { Group: Group$1 }; // Prefer consumption from global THREE, if exists var threeForcegraph = fromKapsule(ForceGraph, three$2.Group, true); const _changeEvent$2 = { type: 'change' }; const _startEvent$1 = { type: 'start' }; const _endEvent$1 = { type: 'end' }; class TrackballControls extends EventDispatcher { constructor( object, domElement ) { super(); const scope = this; const STATE = { NONE: - 1, ROTATE: 0, ZOOM: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_ZOOM_PAN: 4 }; this.object = object; this.domElement = domElement; this.domElement.style.touchAction = 'none'; // disable touch scroll // API this.enabled = true; this.screen = { left: 0, top: 0, width: 0, height: 0 }; this.rotateSpeed = 1.0; this.zoomSpeed = 1.2; this.panSpeed = 0.3; this.noRotate = false; this.noZoom = false; this.noPan = false; this.staticMoving = false; this.dynamicDampingFactor = 0.2; this.minDistance = 0; this.maxDistance = Infinity; this.minZoom = 0; this.maxZoom = Infinity; this.keys = [ 'KeyA' /*A*/, 'KeyS' /*S*/, 'KeyD' /*D*/ ]; this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN }; // internals this.target = new Vector3(); const EPS = 0.000001; const lastPosition = new Vector3(); let lastZoom = 1; let _state = STATE.NONE, _keyState = STATE.NONE, _touchZoomDistanceStart = 0, _touchZoomDistanceEnd = 0, _lastAngle = 0; const _eye = new Vector3(), _movePrev = new Vector2(), _moveCurr = new Vector2(), _lastAxis = new Vector3(), _zoomStart = new Vector2(), _zoomEnd = new Vector2(), _panStart = new Vector2(), _panEnd = new Vector2(), _pointers = [], _pointerPositions = {}; // for reset this.target0 = this.target.clone(); this.position0 = this.object.position.clone(); this.up0 = this.object.up.clone(); this.zoom0 = this.object.zoom; // methods this.handleResize = function () { const box = scope.domElement.getBoundingClientRect(); // adjustments come from similar code in the jquery offset() function const d = scope.domElement.ownerDocument.documentElement; scope.screen.left = box.left + window.pageXOffset - d.clientLeft; scope.screen.top = box.top + window.pageYOffset - d.clientTop; scope.screen.width = box.width; scope.screen.height = box.height; }; const getMouseOnScreen = ( function () { const vector = new Vector2(); return function getMouseOnScreen( pageX, pageY ) { vector.set( ( pageX - scope.screen.left ) / scope.screen.width, ( pageY - scope.screen.top ) / scope.screen.height ); return vector; }; }() ); const getMouseOnCircle = ( function () { const vector = new Vector2(); return function getMouseOnCircle( pageX, pageY ) { vector.set( ( ( pageX - scope.screen.width * 0.5 - scope.screen.left ) / ( scope.screen.width * 0.5 ) ), ( ( scope.screen.height + 2 * ( scope.screen.top - pageY ) ) / scope.screen.width ) // screen.width intentional ); return vector; }; }() ); this.rotateCamera = ( function () { const axis = new Vector3(), quaternion = new Quaternion(), eyeDirection = new Vector3(), objectUpDirection = new Vector3(), objectSidewaysDirection = new Vector3(), moveDirection = new Vector3(); return function rotateCamera() { moveDirection.set( _moveCurr.x - _movePrev.x, _moveCurr.y - _movePrev.y, 0 ); let angle = moveDirection.length(); if ( angle ) { _eye.copy( scope.object.position ).sub( scope.target ); eyeDirection.copy( _eye ).normalize(); objectUpDirection.copy( scope.object.up ).normalize(); objectSidewaysDirection.crossVectors( objectUpDirection, eyeDirection ).normalize(); objectUpDirection.setLength( _moveCurr.y - _movePrev.y ); objectSidewaysDirection.setLength( _moveCurr.x - _movePrev.x ); moveDirection.copy( objectUpDirection.add( objectSidewaysDirection ) ); axis.crossVectors( moveDirection, _eye ).normalize(); angle *= scope.rotateSpeed; quaternion.setFromAxisAngle( axis, angle ); _eye.applyQuaternion( quaternion ); scope.object.up.applyQuaternion( quaternion ); _lastAxis.copy( axis ); _lastAngle = angle; } else if ( ! scope.staticMoving && _lastAngle ) { _lastAngle *= Math.sqrt( 1.0 - scope.dynamicDampingFactor ); _eye.copy( scope.object.position ).sub( scope.target ); quaternion.setFromAxisAngle( _lastAxis, _lastAngle ); _eye.applyQuaternion( quaternion ); scope.object.up.applyQuaternion( quaternion ); } _movePrev.copy( _moveCurr ); }; }() ); this.zoomCamera = function () { let factor; if ( _state === STATE.TOUCH_ZOOM_PAN ) { factor = _touchZoomDistanceStart / _touchZoomDistanceEnd; _touchZoomDistanceStart = _touchZoomDistanceEnd; if ( scope.object.isPerspectiveCamera ) { _eye.multiplyScalar( factor ); } else if ( scope.object.isOrthographicCamera ) { scope.object.zoom = MathUtils.clamp( scope.object.zoom / factor, scope.minZoom, scope.maxZoom ); if ( lastZoom !== scope.object.zoom ) { scope.object.updateProjectionMatrix(); } } else { console.warn( 'THREE.TrackballControls: Unsupported camera type' ); } } else { factor = 1.0 + ( _zoomEnd.y - _zoomStart.y ) * scope.zoomSpeed; if ( factor !== 1.0 && factor > 0.0 ) { if ( scope.object.isPerspectiveCamera ) { _eye.multiplyScalar( factor ); } else if ( scope.object.isOrthographicCamera ) { scope.object.zoom = MathUtils.clamp( scope.object.zoom / factor, scope.minZoom, scope.maxZoom ); if ( lastZoom !== scope.object.zoom ) { scope.object.updateProjectionMatrix(); } } else { console.warn( 'THREE.TrackballControls: Unsupported camera type' ); } } if ( scope.staticMoving ) { _zoomStart.copy( _zoomEnd ); } else { _zoomStart.y += ( _zoomEnd.y - _zoomStart.y ) * this.dynamicDampingFactor; } } }; this.panCamera = ( function () { const mouseChange = new Vector2(), objectUp = new Vector3(), pan = new Vector3(); return function panCamera() { mouseChange.copy( _panEnd ).sub( _panStart ); if ( mouseChange.lengthSq() ) { if ( scope.object.isOrthographicCamera ) { const scale_x = ( scope.object.right - scope.object.left ) / scope.object.zoom / scope.domElement.clientWidth; const scale_y = ( scope.object.top - scope.object.bottom ) / scope.object.zoom / scope.domElement.clientWidth; mouseChange.x *= scale_x; mouseChange.y *= scale_y; } mouseChange.multiplyScalar( _eye.length() * scope.panSpeed ); pan.copy( _eye ).cross( scope.object.up ).setLength( mouseChange.x ); pan.add( objectUp.copy( scope.object.up ).setLength( mouseChange.y ) ); scope.object.position.add( pan ); scope.target.add( pan ); if ( scope.staticMoving ) { _panStart.copy( _panEnd ); } else { _panStart.add( mouseChange.subVectors( _panEnd, _panStart ).multiplyScalar( scope.dynamicDampingFactor ) ); } } }; }() ); this.checkDistances = function () { if ( ! scope.noZoom || ! scope.noPan ) { if ( _eye.lengthSq() > scope.maxDistance * scope.maxDistance ) { scope.object.position.addVectors( scope.target, _eye.setLength( scope.maxDistance ) ); _zoomStart.copy( _zoomEnd ); } if ( _eye.lengthSq() < scope.minDistance * scope.minDistance ) { scope.object.position.addVectors( scope.target, _eye.setLength( scope.minDistance ) ); _zoomStart.copy( _zoomEnd ); } } }; this.update = function () { _eye.subVectors( scope.object.position, scope.target ); if ( ! scope.noRotate ) { scope.rotateCamera(); } if ( ! scope.noZoom ) { scope.zoomCamera(); } if ( ! scope.noPan ) { scope.panCamera(); } scope.object.position.addVectors( scope.target, _eye ); if ( scope.object.isPerspectiveCamera ) { scope.checkDistances(); scope.object.lookAt( scope.target ); if ( lastPosition.distanceToSquared( scope.object.position ) > EPS ) { scope.dispatchEvent( _changeEvent$2 ); lastPosition.copy( scope.object.position ); } } else if ( scope.object.isOrthographicCamera ) { scope.object.lookAt( scope.target ); if ( lastPosition.distanceToSquared( scope.object.position ) > EPS || lastZoom !== scope.object.zoom ) { scope.dispatchEvent( _changeEvent$2 ); lastPosition.copy( scope.object.position ); lastZoom = scope.object.zoom; } } else { console.warn( 'THREE.TrackballControls: Unsupported camera type' ); } }; this.reset = function () { _state = STATE.NONE; _keyState = STATE.NONE; scope.target.copy( scope.target0 ); scope.object.position.copy( scope.position0 ); scope.object.up.copy( scope.up0 ); scope.object.zoom = scope.zoom0; scope.object.updateProjectionMatrix(); _eye.subVectors( scope.object.position, scope.target ); scope.object.lookAt( scope.target ); scope.dispatchEvent( _changeEvent$2 ); lastPosition.copy( scope.object.position ); lastZoom = scope.object.zoom; }; // listeners function onPointerDown( event ) { if ( scope.enabled === false ) return; if ( _pointers.length === 0 ) { scope.domElement.setPointerCapture( event.pointerId ); scope.domElement.addEventListener( 'pointermove', onPointerMove ); scope.domElement.addEventListener( 'pointerup', onPointerUp ); } // addPointer( event ); if ( event.pointerType === 'touch' ) { onTouchStart( event ); } else { onMouseDown( event ); } } function onPointerMove( event ) { if ( scope.enabled === false ) return; if ( event.pointerType === 'touch' ) { onTouchMove( event ); } else { onMouseMove( event ); } } function onPointerUp( event ) { if ( scope.enabled === false ) return; if ( event.pointerType === 'touch' ) { onTouchEnd( event ); } else { onMouseUp(); } // removePointer( event ); if ( _pointers.length === 0 ) { scope.domElement.releasePointerCapture( event.pointerId ); scope.domElement.removeEventListener( 'pointermove', onPointerMove ); scope.domElement.removeEventListener( 'pointerup', onPointerUp ); } } function onPointerCancel( event ) { removePointer( event ); } function keydown( event ) { if ( scope.enabled === false ) return; window.removeEventListener( 'keydown', keydown ); if ( _keyState !== STATE.NONE ) { return; } else if ( event.code === scope.keys[ STATE.ROTATE ] && ! scope.noRotate ) { _keyState = STATE.ROTATE; } else if ( event.code === scope.keys[ STATE.ZOOM ] && ! scope.noZoom ) { _keyState = STATE.ZOOM; } else if ( event.code === scope.keys[ STATE.PAN ] && ! scope.noPan ) { _keyState = STATE.PAN; } } function keyup() { if ( scope.enabled === false ) return; _keyState = STATE.NONE; window.addEventListener( 'keydown', keydown ); } function onMouseDown( event ) { if ( _state === STATE.NONE ) { switch ( event.button ) { case scope.mouseButtons.LEFT: _state = STATE.ROTATE; break; case scope.mouseButtons.MIDDLE: _state = STATE.ZOOM; break; case scope.mouseButtons.RIGHT: _state = STATE.PAN; break; } } const state = ( _keyState !== STATE.NONE ) ? _keyState : _state; if ( state === STATE.ROTATE && ! scope.noRotate ) { _moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) ); _movePrev.copy( _moveCurr ); } else if ( state === STATE.ZOOM && ! scope.noZoom ) { _zoomStart.copy( getMouseOnScreen( event.pageX, event.pageY ) ); _zoomEnd.copy( _zoomStart ); } else if ( state === STATE.PAN && ! scope.noPan ) { _panStart.copy( getMouseOnScreen( event.pageX, event.pageY ) ); _panEnd.copy( _panStart ); } scope.dispatchEvent( _startEvent$1 ); } function onMouseMove( event ) { const state = ( _keyState !== STATE.NONE ) ? _keyState : _state; if ( state === STATE.ROTATE && ! scope.noRotate ) { _movePrev.copy( _moveCurr ); _moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) ); } else if ( state === STATE.ZOOM && ! scope.noZoom ) { _zoomEnd.copy( getMouseOnScreen( event.pageX, event.pageY ) ); } else if ( state === STATE.PAN && ! scope.noPan ) { _panEnd.copy( getMouseOnScreen( event.pageX, event.pageY ) ); } } function onMouseUp() { _state = STATE.NONE; scope.dispatchEvent( _endEvent$1 ); } function onMouseWheel( event ) { if ( scope.enabled === false ) return; if ( scope.noZoom === true ) return; event.preventDefault(); switch ( event.deltaMode ) { case 2: // Zoom in pages _zoomStart.y -= event.deltaY * 0.025; break; case 1: // Zoom in lines _zoomStart.y -= event.deltaY * 0.01; break; default: // undefined, 0, assume pixels _zoomStart.y -= event.deltaY * 0.00025; break; } scope.dispatchEvent( _startEvent$1 ); scope.dispatchEvent( _endEvent$1 ); } function onTouchStart( event ) { trackPointer( event ); switch ( _pointers.length ) { case 1: _state = STATE.TOUCH_ROTATE; _moveCurr.copy( getMouseOnCircle( _pointers[ 0 ].pageX, _pointers[ 0 ].pageY ) ); _movePrev.copy( _moveCurr ); break; default: // 2 or more _state = STATE.TOUCH_ZOOM_PAN; const dx = _pointers[ 0 ].pageX - _pointers[ 1 ].pageX; const dy = _pointers[ 0 ].pageY - _pointers[ 1 ].pageY; _touchZoomDistanceEnd = _touchZoomDistanceStart = Math.sqrt( dx * dx + dy * dy ); const x = ( _pointers[ 0 ].pageX + _pointers[ 1 ].pageX ) / 2; const y = ( _pointers[ 0 ].pageY + _pointers[ 1 ].pageY ) / 2; _panStart.copy( getMouseOnScreen( x, y ) ); _panEnd.copy( _panStart ); break; } scope.dispatchEvent( _startEvent$1 ); } function onTouchMove( event ) { trackPointer( event ); switch ( _pointers.length ) { case 1: _movePrev.copy( _moveCurr ); _moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) ); break; default: // 2 or more const position = getSecondPointerPosition( event ); const dx = event.pageX - position.x; const dy = event.pageY - position.y; _touchZoomDistanceEnd = Math.sqrt( dx * dx + dy * dy ); const x = ( event.pageX + position.x ) / 2; const y = ( event.pageY + position.y ) / 2; _panEnd.copy( getMouseOnScreen( x, y ) ); break; } } function onTouchEnd( event ) { switch ( _pointers.length ) { case 0: _state = STATE.NONE; break; case 1: _state = STATE.TOUCH_ROTATE; _moveCurr.copy( getMouseOnCircle( event.pageX, event.pageY ) ); _movePrev.copy( _moveCurr ); break; case 2: _state = STATE.TOUCH_ZOOM_PAN; for ( let i = 0; i < _pointers.length; i ++ ) { if ( _pointers[ i ].pointerId !== event.pointerId ) { const position = _pointerPositions[ _pointers[ i ].pointerId ]; _moveCurr.copy( getMouseOnCircle( position.x, position.y ) ); _movePrev.copy( _moveCurr ); break; } } break; } scope.dispatchEvent( _endEvent$1 ); } function contextmenu( event ) { if ( scope.enabled === false ) return; event.preventDefault(); } function addPointer( event ) { _pointers.push( event ); } function removePointer( event ) { delete _pointerPositions[ event.pointerId ]; for ( let i = 0; i < _pointers.length; i ++ ) { if ( _pointers[ i ].pointerId == event.pointerId ) { _pointers.splice( i, 1 ); return; } } } function trackPointer( event ) { let position = _pointerPositions[ event.pointerId ]; if ( position === undefined ) { position = new Vector2(); _pointerPositions[ event.pointerId ] = position; } position.set( event.pageX, event.pageY ); } function getSecondPointerPosition( event ) { const pointer = ( event.pointerId === _pointers[ 0 ].pointerId ) ? _pointers[ 1 ] : _pointers[ 0 ]; return _pointerPositions[ pointer.pointerId ]; } this.dispose = function () { scope.domElement.removeEventListener( 'contextmenu', contextmenu ); scope.domElement.removeEventListener( 'pointerdown', onPointerDown ); scope.domElement.removeEventListener( 'pointercancel', onPointerCancel ); scope.domElement.removeEventListener( 'wheel', onMouseWheel ); scope.domElement.removeEventListener( 'pointermove', onPointerMove ); scope.domElement.removeEventListener( 'pointerup', onPointerUp ); window.removeEventListener( 'keydown', keydown ); window.removeEventListener( 'keyup', keyup ); }; this.domElement.addEventListener( 'contextmenu', contextmenu ); this.domElement.addEventListener( 'pointerdown', onPointerDown ); this.domElement.addEventListener( 'pointercancel', onPointerCancel ); this.domElement.addEventListener( 'wheel', onMouseWheel, { passive: false } ); window.addEventListener( 'keydown', keydown ); window.addEventListener( 'keyup', keyup ); this.handleResize(); // force an update at start this.update(); } } // OrbitControls performs orbiting, dollying (zooming), and panning. // Unlike TrackballControls, it maintains the "up" direction object.up (+Y by default). // // Orbit - left mouse / touch: one-finger move // Zoom - middle mouse, or mousewheel / touch: two-finger spread or squish // Pan - right mouse, or left mouse + ctrl/meta/shiftKey, or arrow keys / touch: two-finger move const _changeEvent$1 = { type: 'change' }; const _startEvent = { type: 'start' }; const _endEvent = { type: 'end' }; const _ray = new Ray(); const _plane = new Plane(); const TILT_LIMIT = Math.cos( 70 * MathUtils.DEG2RAD ); class OrbitControls extends EventDispatcher { constructor( object, domElement ) { super(); this.object = object; this.domElement = domElement; this.domElement.style.touchAction = 'none'; // disable touch scroll // Set to false to disable this control this.enabled = true; // "target" sets the location of focus, where the object orbits around this.target = new Vector3(); // Sets the 3D cursor (similar to Blender), from which the maxTargetRadius takes effect this.cursor = new Vector3(); // How far you can dolly in and out ( PerspectiveCamera only ) this.minDistance = 0; this.maxDistance = Infinity; // How far you can zoom in and out ( OrthographicCamera only ) this.minZoom = 0; this.maxZoom = Infinity; // Limit camera target within a spherical area around the cursor this.minTargetRadius = 0; this.maxTargetRadius = Infinity; // How far you can orbit vertically, upper and lower limits. // Range is 0 to Math.PI radians. this.minPolarAngle = 0; // radians this.maxPolarAngle = Math.PI; // radians // How far you can orbit horizontally, upper and lower limits. // If set, the interval [ min, max ] must be a sub-interval of [ - 2 PI, 2 PI ], with ( max - min < 2 PI ) this.minAzimuthAngle = - Infinity; // radians this.maxAzimuthAngle = Infinity; // radians // Set to true to enable damping (inertia) // If damping is enabled, you must call controls.update() in your animation loop this.enableDamping = false; this.dampingFactor = 0.05; // This option actually enables dollying in and out; left as "zoom" for backwards compatibility. // Set to false to disable zooming this.enableZoom = true; this.zoomSpeed = 1.0; // Set to false to disable rotating this.enableRotate = true; this.rotateSpeed = 1.0; // Set to false to disable panning this.enablePan = true; this.panSpeed = 1.0; this.screenSpacePanning = true; // if false, pan orthogonal to world-space direction camera.up this.keyPanSpeed = 7.0; // pixels moved per arrow key push this.zoomToCursor = false; // Set to true to automatically rotate around the target // If auto-rotate is enabled, you must call controls.update() in your animation loop this.autoRotate = false; this.autoRotateSpeed = 2.0; // 30 seconds per orbit when fps is 60 // The four arrow keys this.keys = { LEFT: 'ArrowLeft', UP: 'ArrowUp', RIGHT: 'ArrowRight', BOTTOM: 'ArrowDown' }; // Mouse buttons this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN }; // Touch fingers this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN }; // for reset this.target0 = this.target.clone(); this.position0 = this.object.position.clone(); this.zoom0 = this.object.zoom; // the target DOM element for key events this._domElementKeyEvents = null; // // public methods // this.getPolarAngle = function () { return spherical.phi; }; this.getAzimuthalAngle = function () { return spherical.theta; }; this.getDistance = function () { return this.object.position.distanceTo( this.target ); }; this.listenToKeyEvents = function ( domElement ) { domElement.addEventListener( 'keydown', onKeyDown ); this._domElementKeyEvents = domElement; }; this.stopListenToKeyEvents = function () { this._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown ); this._domElementKeyEvents = null; }; this.saveState = function () { scope.target0.copy( scope.target ); scope.position0.copy( scope.object.position ); scope.zoom0 = scope.object.zoom; }; this.reset = function () { scope.target.copy( scope.target0 ); scope.object.position.copy( scope.position0 ); scope.object.zoom = scope.zoom0; scope.object.updateProjectionMatrix(); scope.dispatchEvent( _changeEvent$1 ); scope.update(); state = STATE.NONE; }; // this method is exposed, but perhaps it would be better if we can make it private... this.update = function () { const offset = new Vector3(); // so camera.up is the orbit axis const quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) ); const quatInverse = quat.clone().invert(); const lastPosition = new Vector3(); const lastQuaternion = new Quaternion(); const lastTargetPosition = new Vector3(); const twoPI = 2 * Math.PI; return function update( deltaTime = null ) { const position = scope.object.position; offset.copy( position ).sub( scope.target ); // rotate offset to "y-axis-is-up" space offset.applyQuaternion( quat ); // angle from z-axis around y-axis spherical.setFromVector3( offset ); if ( scope.autoRotate && state === STATE.NONE ) { rotateLeft( getAutoRotationAngle( deltaTime ) ); } if ( scope.enableDamping ) { spherical.theta += sphericalDelta.theta * scope.dampingFactor; spherical.phi += sphericalDelta.phi * scope.dampingFactor; } else { spherical.theta += sphericalDelta.theta; spherical.phi += sphericalDelta.phi; } // restrict theta to be between desired limits let min = scope.minAzimuthAngle; let max = scope.maxAzimuthAngle; if ( isFinite( min ) && isFinite( max ) ) { if ( min < - Math.PI ) min += twoPI; else if ( min > Math.PI ) min -= twoPI; if ( max < - Math.PI ) max += twoPI; else if ( max > Math.PI ) max -= twoPI; if ( min <= max ) { spherical.theta = Math.max( min, Math.min( max, spherical.theta ) ); } else { spherical.theta = ( spherical.theta > ( min + max ) / 2 ) ? Math.max( min, spherical.theta ) : Math.min( max, spherical.theta ); } } // restrict phi to be between desired limits spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) ); spherical.makeSafe(); // move target to panned location if ( scope.enableDamping === true ) { scope.target.addScaledVector( panOffset, scope.dampingFactor ); } else { scope.target.add( panOffset ); } // Limit the target distance from the cursor to create a sphere around the center of interest scope.target.sub( scope.cursor ); scope.target.clampLength( scope.minTargetRadius, scope.maxTargetRadius ); scope.target.add( scope.cursor ); let zoomChanged = false; // adjust the camera position based on zoom only if we're not zooming to the cursor or if it's an ortho camera // we adjust zoom later in these cases if ( scope.zoomToCursor && performCursorZoom || scope.object.isOrthographicCamera ) { spherical.radius = clampDistance( spherical.radius ); } else { const prevRadius = spherical.radius; spherical.radius = clampDistance( spherical.radius * scale ); zoomChanged = prevRadius != spherical.radius; } offset.setFromSpherical( spherical ); // rotate offset back to "camera-up-vector-is-up" space offset.applyQuaternion( quatInverse ); position.copy( scope.target ).add( offset ); scope.object.lookAt( scope.target ); if ( scope.enableDamping === true ) { sphericalDelta.theta *= ( 1 - scope.dampingFactor ); sphericalDelta.phi *= ( 1 - scope.dampingFactor ); panOffset.multiplyScalar( 1 - scope.dampingFactor ); } else { sphericalDelta.set( 0, 0, 0 ); panOffset.set( 0, 0, 0 ); } // adjust camera position if ( scope.zoomToCursor && performCursorZoom ) { let newRadius = null; if ( scope.object.isPerspectiveCamera ) { // move the camera down the pointer ray // this method avoids floating point error const prevRadius = offset.length(); newRadius = clampDistance( prevRadius * scale ); const radiusDelta = prevRadius - newRadius; scope.object.position.addScaledVector( dollyDirection, radiusDelta ); scope.object.updateMatrixWorld(); zoomChanged = !! radiusDelta; } else if ( scope.object.isOrthographicCamera ) { // adjust the ortho camera position based on zoom changes const mouseBefore = new Vector3( mouse.x, mouse.y, 0 ); mouseBefore.unproject( scope.object ); const prevZoom = scope.object.zoom; scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) ); scope.object.updateProjectionMatrix(); zoomChanged = prevZoom !== scope.object.zoom; const mouseAfter = new Vector3( mouse.x, mouse.y, 0 ); mouseAfter.unproject( scope.object ); scope.object.position.sub( mouseAfter ).add( mouseBefore ); scope.object.updateMatrixWorld(); newRadius = offset.length(); } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - zoom to cursor disabled.' ); scope.zoomToCursor = false; } // handle the placement of the target if ( newRadius !== null ) { if ( this.screenSpacePanning ) { // position the orbit target in front of the new camera position scope.target.set( 0, 0, - 1 ) .transformDirection( scope.object.matrix ) .multiplyScalar( newRadius ) .add( scope.object.position ); } else { // get the ray and translation plane to compute target _ray.origin.copy( scope.object.position ); _ray.direction.set( 0, 0, - 1 ).transformDirection( scope.object.matrix ); // if the camera is 20 degrees above the horizon then don't adjust the focus target to avoid // extremely large values if ( Math.abs( scope.object.up.dot( _ray.direction ) ) < TILT_LIMIT ) { object.lookAt( scope.target ); } else { _plane.setFromNormalAndCoplanarPoint( scope.object.up, scope.target ); _ray.intersectPlane( _plane, scope.target ); } } } } else if ( scope.object.isOrthographicCamera ) { const prevZoom = scope.object.zoom; scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / scale ) ); if ( prevZoom !== scope.object.zoom ) { scope.object.updateProjectionMatrix(); zoomChanged = true; } } scale = 1; performCursorZoom = false; // update condition is: // min(camera displacement, camera rotation in radians)^2 > EPS // using small-angle approximation cos(x/2) = 1 - x^2 / 8 if ( zoomChanged || lastPosition.distanceToSquared( scope.object.position ) > EPS || 8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS || lastTargetPosition.distanceToSquared( scope.target ) > EPS ) { scope.dispatchEvent( _changeEvent$1 ); lastPosition.copy( scope.object.position ); lastQuaternion.copy( scope.object.quaternion ); lastTargetPosition.copy( scope.target ); return true; } return false; }; }(); this.dispose = function () { scope.domElement.removeEventListener( 'contextmenu', onContextMenu ); scope.domElement.removeEventListener( 'pointerdown', onPointerDown ); scope.domElement.removeEventListener( 'pointercancel', onPointerUp ); scope.domElement.removeEventListener( 'wheel', onMouseWheel ); scope.domElement.removeEventListener( 'pointermove', onPointerMove ); scope.domElement.removeEventListener( 'pointerup', onPointerUp ); const document = scope.domElement.getRootNode(); // offscreen canvas compatibility document.removeEventListener( 'keydown', interceptControlDown, { capture: true } ); if ( scope._domElementKeyEvents !== null ) { scope._domElementKeyEvents.removeEventListener( 'keydown', onKeyDown ); scope._domElementKeyEvents = null; } //scope.dispatchEvent( { type: 'dispose' } ); // should this be added here? }; // // internals // const scope = this; const STATE = { NONE: - 1, ROTATE: 0, DOLLY: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_PAN: 4, TOUCH_DOLLY_PAN: 5, TOUCH_DOLLY_ROTATE: 6 }; let state = STATE.NONE; const EPS = 0.000001; // current position in spherical coordinates const spherical = new Spherical(); const sphericalDelta = new Spherical(); let scale = 1; const panOffset = new Vector3(); const rotateStart = new Vector2(); const rotateEnd = new Vector2(); const rotateDelta = new Vector2(); const panStart = new Vector2(); const panEnd = new Vector2(); const panDelta = new Vector2(); const dollyStart = new Vector2(); const dollyEnd = new Vector2(); const dollyDelta = new Vector2(); const dollyDirection = new Vector3(); const mouse = new Vector2(); let performCursorZoom = false; const pointers = []; const pointerPositions = {}; let controlActive = false; function getAutoRotationAngle( deltaTime ) { if ( deltaTime !== null ) { return ( 2 * Math.PI / 60 * scope.autoRotateSpeed ) * deltaTime; } else { return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed; } } function getZoomScale( delta ) { const normalizedDelta = Math.abs( delta * 0.01 ); return Math.pow( 0.95, scope.zoomSpeed * normalizedDelta ); } function rotateLeft( angle ) { sphericalDelta.theta -= angle; } function rotateUp( angle ) { sphericalDelta.phi -= angle; } const panLeft = function () { const v = new Vector3(); return function panLeft( distance, objectMatrix ) { v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix v.multiplyScalar( - distance ); panOffset.add( v ); }; }(); const panUp = function () { const v = new Vector3(); return function panUp( distance, objectMatrix ) { if ( scope.screenSpacePanning === true ) { v.setFromMatrixColumn( objectMatrix, 1 ); } else { v.setFromMatrixColumn( objectMatrix, 0 ); v.crossVectors( scope.object.up, v ); } v.multiplyScalar( distance ); panOffset.add( v ); }; }(); // deltaX and deltaY are in pixels; right and down are positive const pan = function () { const offset = new Vector3(); return function pan( deltaX, deltaY ) { const element = scope.domElement; if ( scope.object.isPerspectiveCamera ) { // perspective const position = scope.object.position; offset.copy( position ).sub( scope.target ); let targetDistance = offset.length(); // half of the fov is center to top of screen targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 ); // we use only clientHeight here so aspect ratio does not distort speed panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix ); panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix ); } else if ( scope.object.isOrthographicCamera ) { // orthographic panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix ); panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix ); } else { // camera neither orthographic nor perspective console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' ); scope.enablePan = false; } }; }(); function dollyOut( dollyScale ) { if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) { scale /= dollyScale; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } function dollyIn( dollyScale ) { if ( scope.object.isPerspectiveCamera || scope.object.isOrthographicCamera ) { scale *= dollyScale; } else { console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' ); scope.enableZoom = false; } } function updateZoomParameters( x, y ) { if ( ! scope.zoomToCursor ) { return; } performCursorZoom = true; const rect = scope.domElement.getBoundingClientRect(); const dx = x - rect.left; const dy = y - rect.top; const w = rect.width; const h = rect.height; mouse.x = ( dx / w ) * 2 - 1; mouse.y = - ( dy / h ) * 2 + 1; dollyDirection.set( mouse.x, mouse.y, 1 ).unproject( scope.object ).sub( scope.object.position ).normalize(); } function clampDistance( dist ) { return Math.max( scope.minDistance, Math.min( scope.maxDistance, dist ) ); } // // event callbacks - update the object state // function handleMouseDownRotate( event ) { rotateStart.set( event.clientX, event.clientY ); } function handleMouseDownDolly( event ) { updateZoomParameters( event.clientX, event.clientX ); dollyStart.set( event.clientX, event.clientY ); } function handleMouseDownPan( event ) { panStart.set( event.clientX, event.clientY ); } function handleMouseMoveRotate( event ) { rotateEnd.set( event.clientX, event.clientY ); rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed ); const element = scope.domElement; rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight ); rotateStart.copy( rotateEnd ); scope.update(); } function handleMouseMoveDolly( event ) { dollyEnd.set( event.clientX, event.clientY ); dollyDelta.subVectors( dollyEnd, dollyStart ); if ( dollyDelta.y > 0 ) { dollyOut( getZoomScale( dollyDelta.y ) ); } else if ( dollyDelta.y < 0 ) { dollyIn( getZoomScale( dollyDelta.y ) ); } dollyStart.copy( dollyEnd ); scope.update(); } function handleMouseMovePan( event ) { panEnd.set( event.clientX, event.clientY ); panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); scope.update(); } function handleMouseWheel( event ) { updateZoomParameters( event.clientX, event.clientY ); if ( event.deltaY < 0 ) { dollyIn( getZoomScale( event.deltaY ) ); } else if ( event.deltaY > 0 ) { dollyOut( getZoomScale( event.deltaY ) ); } scope.update(); } function handleKeyDown( event ) { let needsUpdate = false; switch ( event.code ) { case scope.keys.UP: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { rotateUp( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight ); } else { pan( 0, scope.keyPanSpeed ); } needsUpdate = true; break; case scope.keys.BOTTOM: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { rotateUp( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight ); } else { pan( 0, - scope.keyPanSpeed ); } needsUpdate = true; break; case scope.keys.LEFT: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { rotateLeft( 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight ); } else { pan( scope.keyPanSpeed, 0 ); } needsUpdate = true; break; case scope.keys.RIGHT: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { rotateLeft( - 2 * Math.PI * scope.rotateSpeed / scope.domElement.clientHeight ); } else { pan( - scope.keyPanSpeed, 0 ); } needsUpdate = true; break; } if ( needsUpdate ) { // prevent the browser from scrolling on cursor keys event.preventDefault(); scope.update(); } } function handleTouchStartRotate( event ) { if ( pointers.length === 1 ) { rotateStart.set( event.pageX, event.pageY ); } else { const position = getSecondPointerPosition( event ); const x = 0.5 * ( event.pageX + position.x ); const y = 0.5 * ( event.pageY + position.y ); rotateStart.set( x, y ); } } function handleTouchStartPan( event ) { if ( pointers.length === 1 ) { panStart.set( event.pageX, event.pageY ); } else { const position = getSecondPointerPosition( event ); const x = 0.5 * ( event.pageX + position.x ); const y = 0.5 * ( event.pageY + position.y ); panStart.set( x, y ); } } function handleTouchStartDolly( event ) { const position = getSecondPointerPosition( event ); const dx = event.pageX - position.x; const dy = event.pageY - position.y; const distance = Math.sqrt( dx * dx + dy * dy ); dollyStart.set( 0, distance ); } function handleTouchStartDollyPan( event ) { if ( scope.enableZoom ) handleTouchStartDolly( event ); if ( scope.enablePan ) handleTouchStartPan( event ); } function handleTouchStartDollyRotate( event ) { if ( scope.enableZoom ) handleTouchStartDolly( event ); if ( scope.enableRotate ) handleTouchStartRotate( event ); } function handleTouchMoveRotate( event ) { if ( pointers.length == 1 ) { rotateEnd.set( event.pageX, event.pageY ); } else { const position = getSecondPointerPosition( event ); const x = 0.5 * ( event.pageX + position.x ); const y = 0.5 * ( event.pageY + position.y ); rotateEnd.set( x, y ); } rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed ); const element = scope.domElement; rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight ); rotateStart.copy( rotateEnd ); } function handleTouchMovePan( event ) { if ( pointers.length === 1 ) { panEnd.set( event.pageX, event.pageY ); } else { const position = getSecondPointerPosition( event ); const x = 0.5 * ( event.pageX + position.x ); const y = 0.5 * ( event.pageY + position.y ); panEnd.set( x, y ); } panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed ); pan( panDelta.x, panDelta.y ); panStart.copy( panEnd ); } function handleTouchMoveDolly( event ) { const position = getSecondPointerPosition( event ); const dx = event.pageX - position.x; const dy = event.pageY - position.y; const distance = Math.sqrt( dx * dx + dy * dy ); dollyEnd.set( 0, distance ); dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) ); dollyOut( dollyDelta.y ); dollyStart.copy( dollyEnd ); const centerX = ( event.pageX + position.x ) * 0.5; const centerY = ( event.pageY + position.y ) * 0.5; updateZoomParameters( centerX, centerY ); } function handleTouchMoveDollyPan( event ) { if ( scope.enableZoom ) handleTouchMoveDolly( event ); if ( scope.enablePan ) handleTouchMovePan( event ); } function handleTouchMoveDollyRotate( event ) { if ( scope.enableZoom ) handleTouchMoveDolly( event ); if ( scope.enableRotate ) handleTouchMoveRotate( event ); } // // event handlers - FSM: listen for events and reset state // function onPointerDown( event ) { if ( scope.enabled === false ) return; if ( pointers.length === 0 ) { scope.domElement.setPointerCapture( event.pointerId ); scope.domElement.addEventListener( 'pointermove', onPointerMove ); scope.domElement.addEventListener( 'pointerup', onPointerUp ); } // if ( isTrackingPointer( event ) ) return; // addPointer( event ); if ( event.pointerType === 'touch' ) { onTouchStart( event ); } else { onMouseDown( event ); } } function onPointerMove( event ) { if ( scope.enabled === false ) return; if ( event.pointerType === 'touch' ) { onTouchMove( event ); } else { onMouseMove( event ); } } function onPointerUp( event ) { removePointer( event ); switch ( pointers.length ) { case 0: scope.domElement.releasePointerCapture( event.pointerId ); scope.domElement.removeEventListener( 'pointermove', onPointerMove ); scope.domElement.removeEventListener( 'pointerup', onPointerUp ); scope.dispatchEvent( _endEvent ); state = STATE.NONE; break; case 1: const pointerId = pointers[ 0 ]; const position = pointerPositions[ pointerId ]; // minimal placeholder event - allows state correction on pointer-up onTouchStart( { pointerId: pointerId, pageX: position.x, pageY: position.y } ); break; } } function onMouseDown( event ) { let mouseAction; switch ( event.button ) { case 0: mouseAction = scope.mouseButtons.LEFT; break; case 1: mouseAction = scope.mouseButtons.MIDDLE; break; case 2: mouseAction = scope.mouseButtons.RIGHT; break; default: mouseAction = - 1; } switch ( mouseAction ) { case MOUSE.DOLLY: if ( scope.enableZoom === false ) return; handleMouseDownDolly( event ); state = STATE.DOLLY; break; case MOUSE.ROTATE: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; } else { if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; } break; case MOUSE.PAN: if ( event.ctrlKey || event.metaKey || event.shiftKey ) { if ( scope.enableRotate === false ) return; handleMouseDownRotate( event ); state = STATE.ROTATE; } else { if ( scope.enablePan === false ) return; handleMouseDownPan( event ); state = STATE.PAN; } break; default: state = STATE.NONE; } if ( state !== STATE.NONE ) { scope.dispatchEvent( _startEvent ); } } function onMouseMove( event ) { switch ( state ) { case STATE.ROTATE: if ( scope.enableRotate === false ) return; handleMouseMoveRotate( event ); break; case STATE.DOLLY: if ( scope.enableZoom === false ) return; handleMouseMoveDolly( event ); break; case STATE.PAN: if ( scope.enablePan === false ) return; handleMouseMovePan( event ); break; } } function onMouseWheel( event ) { if ( scope.enabled === false || scope.enableZoom === false || state !== STATE.NONE ) return; event.preventDefault(); scope.dispatchEvent( _startEvent ); handleMouseWheel( customWheelEvent( event ) ); scope.dispatchEvent( _endEvent ); } function customWheelEvent( event ) { const mode = event.deltaMode; // minimal wheel event altered to meet delta-zoom demand const newEvent = { clientX: event.clientX, clientY: event.clientY, deltaY: event.deltaY, }; switch ( mode ) { case 1: // LINE_MODE newEvent.deltaY *= 16; break; case 2: // PAGE_MODE newEvent.deltaY *= 100; break; } // detect if event was triggered by pinching if ( event.ctrlKey && ! controlActive ) { newEvent.deltaY *= 10; } return newEvent; } function interceptControlDown( event ) { if ( event.key === 'Control' ) { controlActive = true; const document = scope.domElement.getRootNode(); // offscreen canvas compatibility document.addEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } ); } } function interceptControlUp( event ) { if ( event.key === 'Control' ) { controlActive = false; const document = scope.domElement.getRootNode(); // offscreen canvas compatibility document.removeEventListener( 'keyup', interceptControlUp, { passive: true, capture: true } ); } } function onKeyDown( event ) { if ( scope.enabled === false || scope.enablePan === false ) return; handleKeyDown( event ); } function onTouchStart( event ) { trackPointer( event ); switch ( pointers.length ) { case 1: switch ( scope.touches.ONE ) { case TOUCH.ROTATE: if ( scope.enableRotate === false ) return; handleTouchStartRotate( event ); state = STATE.TOUCH_ROTATE; break; case TOUCH.PAN: if ( scope.enablePan === false ) return; handleTouchStartPan( event ); state = STATE.TOUCH_PAN; break; default: state = STATE.NONE; } break; case 2: switch ( scope.touches.TWO ) { case TOUCH.DOLLY_PAN: if ( scope.enableZoom === false && scope.enablePan === false ) return; handleTouchStartDollyPan( event ); state = STATE.TOUCH_DOLLY_PAN; break; case TOUCH.DOLLY_ROTATE: if ( scope.enableZoom === false && scope.enableRotate === false ) return; handleTouchStartDollyRotate( event ); state = STATE.TOUCH_DOLLY_ROTATE; break; default: state = STATE.NONE; } break; default: state = STATE.NONE; } if ( state !== STATE.NONE ) { scope.dispatchEvent( _startEvent ); } } function onTouchMove( event ) { trackPointer( event ); switch ( state ) { case STATE.TOUCH_ROTATE: if ( scope.enableRotate === false ) return; handleTouchMoveRotate( event ); scope.update(); break; case STATE.TOUCH_PAN: if ( scope.enablePan === false ) return; handleTouchMovePan( event ); scope.update(); break; case STATE.TOUCH_DOLLY_PAN: if ( scope.enableZoom === false && scope.enablePan === false ) return; handleTouchMoveDollyPan( event ); scope.update(); break; case STATE.TOUCH_DOLLY_ROTATE: if ( scope.enableZoom === false && scope.enableRotate === false ) return; handleTouchMoveDollyRotate( event ); scope.update(); break; default: state = STATE.NONE; } } function onContextMenu( event ) { if ( scope.enabled === false ) return; event.preventDefault(); } function addPointer( event ) { pointers.push( event.pointerId ); } function removePointer( event ) { delete pointerPositions[ event.pointerId ]; for ( let i = 0; i < pointers.length; i ++ ) { if ( pointers[ i ] == event.pointerId ) { pointers.splice( i, 1 ); return; } } } function isTrackingPointer( event ) { for ( let i = 0; i < pointers.length; i ++ ) { if ( pointers[ i ] == event.pointerId ) return true; } return false; } function trackPointer( event ) { let position = pointerPositions[ event.pointerId ]; if ( position === undefined ) { position = new Vector2(); pointerPositions[ event.pointerId ] = position; } position.set( event.pageX, event.pageY ); } function getSecondPointerPosition( event ) { const pointerId = ( event.pointerId === pointers[ 0 ] ) ? pointers[ 1 ] : pointers[ 0 ]; return pointerPositions[ pointerId ]; } // scope.domElement.addEventListener( 'contextmenu', onContextMenu ); scope.domElement.addEventListener( 'pointerdown', onPointerDown ); scope.domElement.addEventListener( 'pointercancel', onPointerUp ); scope.domElement.addEventListener( 'wheel', onMouseWheel, { passive: false } ); const document = scope.domElement.getRootNode(); // offscreen canvas compatibility document.addEventListener( 'keydown', interceptControlDown, { passive: true, capture: true } ); // force an update at start this.update(); } } const _changeEvent = { type: 'change' }; class FlyControls extends EventDispatcher { constructor( object, domElement ) { super(); this.object = object; this.domElement = domElement; // API // Set to false to disable this control this.enabled = true; this.movementSpeed = 1.0; this.rollSpeed = 0.005; this.dragToLook = false; this.autoForward = false; // disable default target object behavior // internals const scope = this; const EPS = 0.000001; const lastQuaternion = new Quaternion(); const lastPosition = new Vector3(); this.tmpQuaternion = new Quaternion(); this.status = 0; this.moveState = { up: 0, down: 0, left: 0, right: 0, forward: 0, back: 0, pitchUp: 0, pitchDown: 0, yawLeft: 0, yawRight: 0, rollLeft: 0, rollRight: 0 }; this.moveVector = new Vector3( 0, 0, 0 ); this.rotationVector = new Vector3( 0, 0, 0 ); this.keydown = function ( event ) { if ( event.altKey || this.enabled === false ) { return; } switch ( event.code ) { case 'ShiftLeft': case 'ShiftRight': this.movementSpeedMultiplier = .1; break; case 'KeyW': this.moveState.forward = 1; break; case 'KeyS': this.moveState.back = 1; break; case 'KeyA': this.moveState.left = 1; break; case 'KeyD': this.moveState.right = 1; break; case 'KeyR': this.moveState.up = 1; break; case 'KeyF': this.moveState.down = 1; break; case 'ArrowUp': this.moveState.pitchUp = 1; break; case 'ArrowDown': this.moveState.pitchDown = 1; break; case 'ArrowLeft': this.moveState.yawLeft = 1; break; case 'ArrowRight': this.moveState.yawRight = 1; break; case 'KeyQ': this.moveState.rollLeft = 1; break; case 'KeyE': this.moveState.rollRight = 1; break; } this.updateMovementVector(); this.updateRotationVector(); }; this.keyup = function ( event ) { if ( this.enabled === false ) return; switch ( event.code ) { case 'ShiftLeft': case 'ShiftRight': this.movementSpeedMultiplier = 1; break; case 'KeyW': this.moveState.forward = 0; break; case 'KeyS': this.moveState.back = 0; break; case 'KeyA': this.moveState.left = 0; break; case 'KeyD': this.moveState.right = 0; break; case 'KeyR': this.moveState.up = 0; break; case 'KeyF': this.moveState.down = 0; break; case 'ArrowUp': this.moveState.pitchUp = 0; break; case 'ArrowDown': this.moveState.pitchDown = 0; break; case 'ArrowLeft': this.moveState.yawLeft = 0; break; case 'ArrowRight': this.moveState.yawRight = 0; break; case 'KeyQ': this.moveState.rollLeft = 0; break; case 'KeyE': this.moveState.rollRight = 0; break; } this.updateMovementVector(); this.updateRotationVector(); }; this.pointerdown = function ( event ) { if ( this.enabled === false ) return; if ( this.dragToLook ) { this.status ++; } else { switch ( event.button ) { case 0: this.moveState.forward = 1; break; case 2: this.moveState.back = 1; break; } this.updateMovementVector(); } }; this.pointermove = function ( event ) { if ( this.enabled === false ) return; if ( ! this.dragToLook || this.status > 0 ) { const container = this.getContainerDimensions(); const halfWidth = container.size[ 0 ] / 2; const halfHeight = container.size[ 1 ] / 2; this.moveState.yawLeft = - ( ( event.pageX - container.offset[ 0 ] ) - halfWidth ) / halfWidth; this.moveState.pitchDown = ( ( event.pageY - container.offset[ 1 ] ) - halfHeight ) / halfHeight; this.updateRotationVector(); } }; this.pointerup = function ( event ) { if ( this.enabled === false ) return; if ( this.dragToLook ) { this.status --; this.moveState.yawLeft = this.moveState.pitchDown = 0; } else { switch ( event.button ) { case 0: this.moveState.forward = 0; break; case 2: this.moveState.back = 0; break; } this.updateMovementVector(); } this.updateRotationVector(); }; this.pointercancel = function () { if ( this.enabled === false ) return; if ( this.dragToLook ) { this.status = 0; this.moveState.yawLeft = this.moveState.pitchDown = 0; } else { this.moveState.forward = 0; this.moveState.back = 0; this.updateMovementVector(); } this.updateRotationVector(); }; this.contextMenu = function ( event ) { if ( this.enabled === false ) return; event.preventDefault(); }; this.update = function ( delta ) { if ( this.enabled === false ) return; const moveMult = delta * scope.movementSpeed; const rotMult = delta * scope.rollSpeed; scope.object.translateX( scope.moveVector.x * moveMult ); scope.object.translateY( scope.moveVector.y * moveMult ); scope.object.translateZ( scope.moveVector.z * moveMult ); scope.tmpQuaternion.set( scope.rotationVector.x * rotMult, scope.rotationVector.y * rotMult, scope.rotationVector.z * rotMult, 1 ).normalize(); scope.object.quaternion.multiply( scope.tmpQuaternion ); if ( lastPosition.distanceToSquared( scope.object.position ) > EPS || 8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) { scope.dispatchEvent( _changeEvent ); lastQuaternion.copy( scope.object.quaternion ); lastPosition.copy( scope.object.position ); } }; this.updateMovementVector = function () { const forward = ( this.moveState.forward || ( this.autoForward && ! this.moveState.back ) ) ? 1 : 0; this.moveVector.x = ( - this.moveState.left + this.moveState.right ); this.moveVector.y = ( - this.moveState.down + this.moveState.up ); this.moveVector.z = ( - forward + this.moveState.back ); //console.log( 'move:', [ this.moveVector.x, this.moveVector.y, this.moveVector.z ] ); }; this.updateRotationVector = function () { this.rotationVector.x = ( - this.moveState.pitchDown + this.moveState.pitchUp ); this.rotationVector.y = ( - this.moveState.yawRight + this.moveState.yawLeft ); this.rotationVector.z = ( - this.moveState.rollRight + this.moveState.rollLeft ); //console.log( 'rotate:', [ this.rotationVector.x, this.rotationVector.y, this.rotationVector.z ] ); }; this.getContainerDimensions = function () { if ( this.domElement != document ) { return { size: [ this.domElement.offsetWidth, this.domElement.offsetHeight ], offset: [ this.domElement.offsetLeft, this.domElement.offsetTop ] }; } else { return { size: [ window.innerWidth, window.innerHeight ], offset: [ 0, 0 ] }; } }; this.dispose = function () { this.domElement.removeEventListener( 'contextmenu', _contextmenu ); this.domElement.removeEventListener( 'pointerdown', _pointerdown ); this.domElement.removeEventListener( 'pointermove', _pointermove ); this.domElement.removeEventListener( 'pointerup', _pointerup ); this.domElement.removeEventListener( 'pointercancel', _pointercancel ); window.removeEventListener( 'keydown', _keydown ); window.removeEventListener( 'keyup', _keyup ); }; const _contextmenu = this.contextMenu.bind( this ); const _pointermove = this.pointermove.bind( this ); const _pointerdown = this.pointerdown.bind( this ); const _pointerup = this.pointerup.bind( this ); const _pointercancel = this.pointercancel.bind( this ); const _keydown = this.keydown.bind( this ); const _keyup = this.keyup.bind( this ); this.domElement.addEventListener( 'contextmenu', _contextmenu ); this.domElement.addEventListener( 'pointerdown', _pointerdown ); this.domElement.addEventListener( 'pointermove', _pointermove ); this.domElement.addEventListener( 'pointerup', _pointerup ); this.domElement.addEventListener( 'pointercancel', _pointercancel ); window.addEventListener( 'keydown', _keydown ); window.addEventListener( 'keyup', _keyup ); this.updateMovementVector(); this.updateRotationVector(); } } /** * Full-screen textured quad shader */ const CopyShader = { name: 'CopyShader', uniforms: { 'tDiffuse': { value: null }, 'opacity': { value: 1.0 } }, vertexShader: /* glsl */` varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`, fragmentShader: /* glsl */` uniform float opacity; uniform sampler2D tDiffuse; varying vec2 vUv; void main() { vec4 texel = texture2D( tDiffuse, vUv ); gl_FragColor = opacity * texel; }` }; class Pass { constructor() { this.isPass = true; // if set to true, the pass is processed by the composer this.enabled = true; // if set to true, the pass indicates to swap read and write buffer after rendering this.needsSwap = true; // if set to true, the pass clears its buffer before rendering this.clear = false; // if set to true, the result of the pass is rendered to screen. This is set automatically by EffectComposer. this.renderToScreen = false; } setSize( /* width, height */ ) {} render( /* renderer, writeBuffer, readBuffer, deltaTime, maskActive */ ) { console.error( 'THREE.Pass: .render() must be implemented in derived pass.' ); } dispose() {} } // Helper for passes that need to fill the viewport with a single quad. const _camera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 ); // https://github.com/mrdoob/three.js/pull/21358 class FullscreenTriangleGeometry extends BufferGeometry { constructor() { super(); this.setAttribute( 'position', new Float32BufferAttribute( [ - 1, 3, 0, - 1, - 1, 0, 3, - 1, 0 ], 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( [ 0, 2, 0, 0, 2, 0 ], 2 ) ); } } const _geometry = new FullscreenTriangleGeometry(); class FullScreenQuad { constructor( material ) { this._mesh = new Mesh( _geometry, material ); } dispose() { this._mesh.geometry.dispose(); } render( renderer ) { renderer.render( this._mesh, _camera ); } get material() { return this._mesh.material; } set material( value ) { this._mesh.material = value; } } class ShaderPass extends Pass { constructor( shader, textureID ) { super(); this.textureID = ( textureID !== undefined ) ? textureID : 'tDiffuse'; if ( shader instanceof ShaderMaterial ) { this.uniforms = shader.uniforms; this.material = shader; } else if ( shader ) { this.uniforms = UniformsUtils.clone( shader.uniforms ); this.material = new ShaderMaterial( { name: ( shader.name !== undefined ) ? shader.name : 'unspecified', defines: Object.assign( {}, shader.defines ), uniforms: this.uniforms, vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader } ); } this.fsQuad = new FullScreenQuad( this.material ); } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { if ( this.uniforms[ this.textureID ] ) { this.uniforms[ this.textureID ].value = readBuffer.texture; } this.fsQuad.material = this.material; if ( this.renderToScreen ) { renderer.setRenderTarget( null ); this.fsQuad.render( renderer ); } else { renderer.setRenderTarget( writeBuffer ); // TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600 if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); this.fsQuad.render( renderer ); } } dispose() { this.material.dispose(); this.fsQuad.dispose(); } } class MaskPass extends Pass { constructor( scene, camera ) { super(); this.scene = scene; this.camera = camera; this.clear = true; this.needsSwap = false; this.inverse = false; } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { const context = renderer.getContext(); const state = renderer.state; // don't update color or depth state.buffers.color.setMask( false ); state.buffers.depth.setMask( false ); // lock buffers state.buffers.color.setLocked( true ); state.buffers.depth.setLocked( true ); // set up stencil let writeValue, clearValue; if ( this.inverse ) { writeValue = 0; clearValue = 1; } else { writeValue = 1; clearValue = 0; } state.buffers.stencil.setTest( true ); state.buffers.stencil.setOp( context.REPLACE, context.REPLACE, context.REPLACE ); state.buffers.stencil.setFunc( context.ALWAYS, writeValue, 0xffffffff ); state.buffers.stencil.setClear( clearValue ); state.buffers.stencil.setLocked( true ); // draw into the stencil buffer renderer.setRenderTarget( readBuffer ); if ( this.clear ) renderer.clear(); renderer.render( this.scene, this.camera ); renderer.setRenderTarget( writeBuffer ); if ( this.clear ) renderer.clear(); renderer.render( this.scene, this.camera ); // unlock color and depth buffer and make them writable for subsequent rendering/clearing state.buffers.color.setLocked( false ); state.buffers.depth.setLocked( false ); state.buffers.color.setMask( true ); state.buffers.depth.setMask( true ); // only render where stencil is set to 1 state.buffers.stencil.setLocked( false ); state.buffers.stencil.setFunc( context.EQUAL, 1, 0xffffffff ); // draw if == 1 state.buffers.stencil.setOp( context.KEEP, context.KEEP, context.KEEP ); state.buffers.stencil.setLocked( true ); } } class ClearMaskPass extends Pass { constructor() { super(); this.needsSwap = false; } render( renderer /*, writeBuffer, readBuffer, deltaTime, maskActive */ ) { renderer.state.buffers.stencil.setLocked( false ); renderer.state.buffers.stencil.setTest( false ); } } class EffectComposer { constructor( renderer, renderTarget ) { this.renderer = renderer; this._pixelRatio = renderer.getPixelRatio(); if ( renderTarget === undefined ) { const size = renderer.getSize( new Vector2() ); this._width = size.width; this._height = size.height; renderTarget = new WebGLRenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, { type: HalfFloatType } ); renderTarget.texture.name = 'EffectComposer.rt1'; } else { this._width = renderTarget.width; this._height = renderTarget.height; } this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.renderTarget2.texture.name = 'EffectComposer.rt2'; this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; this.renderToScreen = true; this.passes = []; this.copyPass = new ShaderPass( CopyShader ); this.copyPass.material.blending = NoBlending; this.clock = new Clock(); } swapBuffers() { const tmp = this.readBuffer; this.readBuffer = this.writeBuffer; this.writeBuffer = tmp; } addPass( pass ) { this.passes.push( pass ); pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } insertPass( pass, index ) { this.passes.splice( index, 0, pass ); pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } removePass( pass ) { const index = this.passes.indexOf( pass ); if ( index !== - 1 ) { this.passes.splice( index, 1 ); } } isLastEnabledPass( passIndex ) { for ( let i = passIndex + 1; i < this.passes.length; i ++ ) { if ( this.passes[ i ].enabled ) { return false; } } return true; } render( deltaTime ) { // deltaTime value is in seconds if ( deltaTime === undefined ) { deltaTime = this.clock.getDelta(); } const currentRenderTarget = this.renderer.getRenderTarget(); let maskActive = false; for ( let i = 0, il = this.passes.length; i < il; i ++ ) { const pass = this.passes[ i ]; if ( pass.enabled === false ) continue; pass.renderToScreen = ( this.renderToScreen && this.isLastEnabledPass( i ) ); pass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime, maskActive ); if ( pass.needsSwap ) { if ( maskActive ) { const context = this.renderer.getContext(); const stencil = this.renderer.state.buffers.stencil; //context.stencilFunc( context.NOTEQUAL, 1, 0xffffffff ); stencil.setFunc( context.NOTEQUAL, 1, 0xffffffff ); this.copyPass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime ); //context.stencilFunc( context.EQUAL, 1, 0xffffffff ); stencil.setFunc( context.EQUAL, 1, 0xffffffff ); } this.swapBuffers(); } if ( MaskPass !== undefined ) { if ( pass instanceof MaskPass ) { maskActive = true; } else if ( pass instanceof ClearMaskPass ) { maskActive = false; } } } this.renderer.setRenderTarget( currentRenderTarget ); } reset( renderTarget ) { if ( renderTarget === undefined ) { const size = this.renderer.getSize( new Vector2() ); this._pixelRatio = this.renderer.getPixelRatio(); this._width = size.width; this._height = size.height; renderTarget = this.renderTarget1.clone(); renderTarget.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio ); } this.renderTarget1.dispose(); this.renderTarget2.dispose(); this.renderTarget1 = renderTarget; this.renderTarget2 = renderTarget.clone(); this.writeBuffer = this.renderTarget1; this.readBuffer = this.renderTarget2; } setSize( width, height ) { this._width = width; this._height = height; const effectiveWidth = this._width * this._pixelRatio; const effectiveHeight = this._height * this._pixelRatio; this.renderTarget1.setSize( effectiveWidth, effectiveHeight ); this.renderTarget2.setSize( effectiveWidth, effectiveHeight ); for ( let i = 0; i < this.passes.length; i ++ ) { this.passes[ i ].setSize( effectiveWidth, effectiveHeight ); } } setPixelRatio( pixelRatio ) { this._pixelRatio = pixelRatio; this.setSize( this._width, this._height ); } dispose() { this.renderTarget1.dispose(); this.renderTarget2.dispose(); this.copyPass.dispose(); } } class RenderPass extends Pass { constructor( scene, camera, overrideMaterial = null, clearColor = null, clearAlpha = null ) { super(); this.scene = scene; this.camera = camera; this.overrideMaterial = overrideMaterial; this.clearColor = clearColor; this.clearAlpha = clearAlpha; this.clear = true; this.clearDepth = false; this.needsSwap = false; this._oldClearColor = new Color(); } render( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) { const oldAutoClear = renderer.autoClear; renderer.autoClear = false; let oldClearAlpha, oldOverrideMaterial; if ( this.overrideMaterial !== null ) { oldOverrideMaterial = this.scene.overrideMaterial; this.scene.overrideMaterial = this.overrideMaterial; } if ( this.clearColor !== null ) { renderer.getClearColor( this._oldClearColor ); renderer.setClearColor( this.clearColor ); } if ( this.clearAlpha !== null ) { oldClearAlpha = renderer.getClearAlpha(); renderer.setClearAlpha( this.clearAlpha ); } if ( this.clearDepth == true ) { renderer.clearDepth(); } renderer.setRenderTarget( this.renderToScreen ? null : readBuffer ); if ( this.clear === true ) { // TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600 renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } renderer.render( this.scene, this.camera ); // restore if ( this.clearColor !== null ) { renderer.setClearColor( this._oldClearColor ); } if ( this.clearAlpha !== null ) { renderer.setClearAlpha( oldClearAlpha ); } if ( this.overrideMaterial !== null ) { this.scene.overrideMaterial = oldOverrideMaterial; } renderer.autoClear = oldAutoClear; } } function _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf ? Object.setPrototypeOf.bind() : function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _inheritsLoose(subClass, superClass) { subClass.prototype = Object.create(superClass.prototype); subClass.prototype.constructor = subClass; _setPrototypeOf(subClass, superClass); } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf.bind() : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } function _isNativeFunction(fn) { try { return Function.toString.call(fn).indexOf("[native code]") !== -1; } catch (e) { return typeof fn === "function"; } } function _isNativeReflectConstruct() { try { var t = !Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); } catch (t) {} return (_isNativeReflectConstruct = function _isNativeReflectConstruct() { return !!t; })(); } function _construct(t, e, r) { if (_isNativeReflectConstruct()) return Reflect.construct.apply(null, arguments); var o = [null]; o.push.apply(o, e); var p = new (t.bind.apply(t, o))(); return r && _setPrototypeOf(p, r.prototype), p; } function _wrapNativeSuper(Class) { var _cache = typeof Map === "function" ? new Map() : undefined; _wrapNativeSuper = function _wrapNativeSuper(Class) { if (Class === null || !_isNativeFunction(Class)) return Class; if (typeof Class !== "function") { throw new TypeError("Super expression must either be null or a function"); } if (typeof _cache !== "undefined") { if (_cache.has(Class)) return _cache.get(Class); _cache.set(Class, Wrapper); } function Wrapper() { return _construct(Class, arguments, _getPrototypeOf(this).constructor); } Wrapper.prototype = Object.create(Class.prototype, { constructor: { value: Wrapper, enumerable: false, writable: true, configurable: true } }); return _setPrototypeOf(Wrapper, Class); }; return _wrapNativeSuper(Class); } // based on https://github.com/styled-components/styled-components/blob/fcf6f3804c57a14dd7984dfab7bc06ee2edca044/src/utils/error.js /** * Parse errors.md and turn it into a simple hash of code: message * @private */ var ERRORS = { "1": "Passed invalid arguments to hsl, please pass multiple numbers e.g. hsl(360, 0.75, 0.4) or an object e.g. rgb({ hue: 255, saturation: 0.4, lightness: 0.75 }).\n\n", "2": "Passed invalid arguments to hsla, please pass multiple numbers e.g. hsla(360, 0.75, 0.4, 0.7) or an object e.g. rgb({ hue: 255, saturation: 0.4, lightness: 0.75, alpha: 0.7 }).\n\n", "3": "Passed an incorrect argument to a color function, please pass a string representation of a color.\n\n", "4": "Couldn't generate valid rgb string from %s, it returned %s.\n\n", "5": "Couldn't parse the color string. Please provide the color as a string in hex, rgb, rgba, hsl or hsla notation.\n\n", "6": "Passed invalid arguments to rgb, please pass multiple numbers e.g. rgb(255, 205, 100) or an object e.g. rgb({ red: 255, green: 205, blue: 100 }).\n\n", "7": "Passed invalid arguments to rgba, please pass multiple numbers e.g. rgb(255, 205, 100, 0.75) or an object e.g. rgb({ red: 255, green: 205, blue: 100, alpha: 0.75 }).\n\n", "8": "Passed invalid argument to toColorString, please pass a RgbColor, RgbaColor, HslColor or HslaColor object.\n\n", "9": "Please provide a number of steps to the modularScale helper.\n\n", "10": "Please pass a number or one of the predefined scales to the modularScale helper as the ratio.\n\n", "11": "Invalid value passed as base to modularScale, expected number or em string but got \"%s\"\n\n", "12": "Expected a string ending in \"px\" or a number passed as the first argument to %s(), got \"%s\" instead.\n\n", "13": "Expected a string ending in \"px\" or a number passed as the second argument to %s(), got \"%s\" instead.\n\n", "14": "Passed invalid pixel value (\"%s\") to %s(), please pass a value like \"12px\" or 12.\n\n", "15": "Passed invalid base value (\"%s\") to %s(), please pass a value like \"12px\" or 12.\n\n", "16": "You must provide a template to this method.\n\n", "17": "You passed an unsupported selector state to this method.\n\n", "18": "minScreen and maxScreen must be provided as stringified numbers with the same units.\n\n", "19": "fromSize and toSize must be provided as stringified numbers with the same units.\n\n", "20": "expects either an array of objects or a single object with the properties prop, fromSize, and toSize.\n\n", "21": "expects the objects in the first argument array to have the properties `prop`, `fromSize`, and `toSize`.\n\n", "22": "expects the first argument object to have the properties `prop`, `fromSize`, and `toSize`.\n\n", "23": "fontFace expects a name of a font-family.\n\n", "24": "fontFace expects either the path to the font file(s) or a name of a local copy.\n\n", "25": "fontFace expects localFonts to be an array.\n\n", "26": "fontFace expects fileFormats to be an array.\n\n", "27": "radialGradient requries at least 2 color-stops to properly render.\n\n", "28": "Please supply a filename to retinaImage() as the first argument.\n\n", "29": "Passed invalid argument to triangle, please pass correct pointingDirection e.g. 'right'.\n\n", "30": "Passed an invalid value to `height` or `width`. Please provide a pixel based unit.\n\n", "31": "The animation shorthand only takes 8 arguments. See the specification for more information: http://mdn.io/animation\n\n", "32": "To pass multiple animations please supply them in arrays, e.g. animation(['rotate', '2s'], ['move', '1s'])\nTo pass a single animation please supply them in simple values, e.g. animation('rotate', '2s')\n\n", "33": "The animation shorthand arrays can only have 8 elements. See the specification for more information: http://mdn.io/animation\n\n", "34": "borderRadius expects a radius value as a string or number as the second argument.\n\n", "35": "borderRadius expects one of \"top\", \"bottom\", \"left\" or \"right\" as the first argument.\n\n", "36": "Property must be a string value.\n\n", "37": "Syntax Error at %s.\n\n", "38": "Formula contains a function that needs parentheses at %s.\n\n", "39": "Formula is missing closing parenthesis at %s.\n\n", "40": "Formula has too many closing parentheses at %s.\n\n", "41": "All values in a formula must have the same unit or be unitless.\n\n", "42": "Please provide a number of steps to the modularScale helper.\n\n", "43": "Please pass a number or one of the predefined scales to the modularScale helper as the ratio.\n\n", "44": "Invalid value passed as base to modularScale, expected number or em/rem string but got %s.\n\n", "45": "Passed invalid argument to hslToColorString, please pass a HslColor or HslaColor object.\n\n", "46": "Passed invalid argument to rgbToColorString, please pass a RgbColor or RgbaColor object.\n\n", "47": "minScreen and maxScreen must be provided as stringified numbers with the same units.\n\n", "48": "fromSize and toSize must be provided as stringified numbers with the same units.\n\n", "49": "Expects either an array of objects or a single object with the properties prop, fromSize, and toSize.\n\n", "50": "Expects the objects in the first argument array to have the properties prop, fromSize, and toSize.\n\n", "51": "Expects the first argument object to have the properties prop, fromSize, and toSize.\n\n", "52": "fontFace expects either the path to the font file(s) or a name of a local copy.\n\n", "53": "fontFace expects localFonts to be an array.\n\n", "54": "fontFace expects fileFormats to be an array.\n\n", "55": "fontFace expects a name of a font-family.\n\n", "56": "linearGradient requries at least 2 color-stops to properly render.\n\n", "57": "radialGradient requries at least 2 color-stops to properly render.\n\n", "58": "Please supply a filename to retinaImage() as the first argument.\n\n", "59": "Passed invalid argument to triangle, please pass correct pointingDirection e.g. 'right'.\n\n", "60": "Passed an invalid value to `height` or `width`. Please provide a pixel based unit.\n\n", "61": "Property must be a string value.\n\n", "62": "borderRadius expects a radius value as a string or number as the second argument.\n\n", "63": "borderRadius expects one of \"top\", \"bottom\", \"left\" or \"right\" as the first argument.\n\n", "64": "The animation shorthand only takes 8 arguments. See the specification for more information: http://mdn.io/animation.\n\n", "65": "To pass multiple animations please supply them in arrays, e.g. animation(['rotate', '2s'], ['move', '1s'])\\nTo pass a single animation please supply them in simple values, e.g. animation('rotate', '2s').\n\n", "66": "The animation shorthand arrays can only have 8 elements. See the specification for more information: http://mdn.io/animation.\n\n", "67": "You must provide a template to this method.\n\n", "68": "You passed an unsupported selector state to this method.\n\n", "69": "Expected a string ending in \"px\" or a number passed as the first argument to %s(), got %s instead.\n\n", "70": "Expected a string ending in \"px\" or a number passed as the second argument to %s(), got %s instead.\n\n", "71": "Passed invalid pixel value %s to %s(), please pass a value like \"12px\" or 12.\n\n", "72": "Passed invalid base value %s to %s(), please pass a value like \"12px\" or 12.\n\n", "73": "Please provide a valid CSS variable.\n\n", "74": "CSS variable not found and no default was provided.\n\n", "75": "important requires a valid style object, got a %s instead.\n\n", "76": "fromSize and toSize must be provided as stringified numbers with the same units as minScreen and maxScreen.\n\n", "77": "remToPx expects a value in \"rem\" but you provided it in \"%s\".\n\n", "78": "base must be set in \"px\" or \"%\" but you set it in \"%s\".\n" }; /** * super basic version of sprintf * @private */ function format() { for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } var a = args[0]; var b = []; var c; for (c = 1; c < args.length; c += 1) { b.push(args[c]); } b.forEach(function (d) { a = a.replace(/%[a-z]/, d); }); return a; } /** * Create an error file out of errors.md for development and a simple web link to the full errors * in production mode. * @private */ var PolishedError = /*#__PURE__*/function (_Error) { _inheritsLoose(PolishedError, _Error); function PolishedError(code) { var _this; if (process.env.NODE_ENV === 'production') { _this = _Error.call(this, "An error occurred. See https://github.com/styled-components/polished/blob/main/src/internalHelpers/errors.md#" + code + " for more information.") || this; } else { for (var _len2 = arguments.length, args = new Array(_len2 > 1 ? _len2 - 1 : 0), _key2 = 1; _key2 < _len2; _key2++) { args[_key2 - 1] = arguments[_key2]; } _this = _Error.call(this, format.apply(void 0, [ERRORS[code]].concat(args))) || this; } return _assertThisInitialized(_this); } return PolishedError; }( /*#__PURE__*/_wrapNativeSuper(Error)); function colorToInt(color) { return Math.round(color * 255); } function convertToInt(red, green, blue) { return colorToInt(red) + "," + colorToInt(green) + "," + colorToInt(blue); } function hslToRgb(hue, saturation, lightness, convert) { if (convert === void 0) { convert = convertToInt; } if (saturation === 0) { // achromatic return convert(lightness, lightness, lightness); } // formulae from https://en.wikipedia.org/wiki/HSL_and_HSV var huePrime = (hue % 360 + 360) % 360 / 60; var chroma = (1 - Math.abs(2 * lightness - 1)) * saturation; var secondComponent = chroma * (1 - Math.abs(huePrime % 2 - 1)); var red = 0; var green = 0; var blue = 0; if (huePrime >= 0 && huePrime < 1) { red = chroma; green = secondComponent; } else if (huePrime >= 1 && huePrime < 2) { red = secondComponent; green = chroma; } else if (huePrime >= 2 && huePrime < 3) { green = chroma; blue = secondComponent; } else if (huePrime >= 3 && huePrime < 4) { green = secondComponent; blue = chroma; } else if (huePrime >= 4 && huePrime < 5) { red = secondComponent; blue = chroma; } else if (huePrime >= 5 && huePrime < 6) { red = chroma; blue = secondComponent; } var lightnessModification = lightness - chroma / 2; var finalRed = red + lightnessModification; var finalGreen = green + lightnessModification; var finalBlue = blue + lightnessModification; return convert(finalRed, finalGreen, finalBlue); } var namedColorMap = { aliceblue: 'f0f8ff', antiquewhite: 'faebd7', aqua: '00ffff', aquamarine: '7fffd4', azure: 'f0ffff', beige: 'f5f5dc', bisque: 'ffe4c4', black: '000', blanchedalmond: 'ffebcd', blue: '0000ff', blueviolet: '8a2be2', brown: 'a52a2a', burlywood: 'deb887', cadetblue: '5f9ea0', chartreuse: '7fff00', chocolate: 'd2691e', coral: 'ff7f50', cornflowerblue: '6495ed', cornsilk: 'fff8dc', crimson: 'dc143c', cyan: '00ffff', darkblue: '00008b', darkcyan: '008b8b', darkgoldenrod: 'b8860b', darkgray: 'a9a9a9', darkgreen: '006400', darkgrey: 'a9a9a9', darkkhaki: 'bdb76b', darkmagenta: '8b008b', darkolivegreen: '556b2f', darkorange: 'ff8c00', darkorchid: '9932cc', darkred: '8b0000', darksalmon: 'e9967a', darkseagreen: '8fbc8f', darkslateblue: '483d8b', darkslategray: '2f4f4f', darkslategrey: '2f4f4f', darkturquoise: '00ced1', darkviolet: '9400d3', deeppink: 'ff1493', deepskyblue: '00bfff', dimgray: '696969', dimgrey: '696969', dodgerblue: '1e90ff', firebrick: 'b22222', floralwhite: 'fffaf0', forestgreen: '228b22', fuchsia: 'ff00ff', gainsboro: 'dcdcdc', ghostwhite: 'f8f8ff', gold: 'ffd700', goldenrod: 'daa520', gray: '808080', green: '008000', greenyellow: 'adff2f', grey: '808080', honeydew: 'f0fff0', hotpink: 'ff69b4', indianred: 'cd5c5c', indigo: '4b0082', ivory: 'fffff0', khaki: 'f0e68c', lavender: 'e6e6fa', lavenderblush: 'fff0f5', lawngreen: '7cfc00', lemonchiffon: 'fffacd', lightblue: 'add8e6', lightcoral: 'f08080', lightcyan: 'e0ffff', lightgoldenrodyellow: 'fafad2', lightgray: 'd3d3d3', lightgreen: '90ee90', lightgrey: 'd3d3d3', lightpink: 'ffb6c1', lightsalmon: 'ffa07a', lightseagreen: '20b2aa', lightskyblue: '87cefa', lightslategray: '789', lightslategrey: '789', lightsteelblue: 'b0c4de', lightyellow: 'ffffe0', lime: '0f0', limegreen: '32cd32', linen: 'faf0e6', magenta: 'f0f', maroon: '800000', mediumaquamarine: '66cdaa', mediumblue: '0000cd', mediumorchid: 'ba55d3', mediumpurple: '9370db', mediumseagreen: '3cb371', mediumslateblue: '7b68ee', mediumspringgreen: '00fa9a', mediumturquoise: '48d1cc', mediumvioletred: 'c71585', midnightblue: '191970', mintcream: 'f5fffa', mistyrose: 'ffe4e1', moccasin: 'ffe4b5', navajowhite: 'ffdead', navy: '000080', oldlace: 'fdf5e6', olive: '808000', olivedrab: '6b8e23', orange: 'ffa500', orangered: 'ff4500', orchid: 'da70d6', palegoldenrod: 'eee8aa', palegreen: '98fb98', paleturquoise: 'afeeee', palevioletred: 'db7093', papayawhip: 'ffefd5', peachpuff: 'ffdab9', peru: 'cd853f', pink: 'ffc0cb', plum: 'dda0dd', powderblue: 'b0e0e6', purple: '800080', rebeccapurple: '639', red: 'f00', rosybrown: 'bc8f8f', royalblue: '4169e1', saddlebrown: '8b4513', salmon: 'fa8072', sandybrown: 'f4a460', seagreen: '2e8b57', seashell: 'fff5ee', sienna: 'a0522d', silver: 'c0c0c0', skyblue: '87ceeb', slateblue: '6a5acd', slategray: '708090', slategrey: '708090', snow: 'fffafa', springgreen: '00ff7f', steelblue: '4682b4', tan: 'd2b48c', teal: '008080', thistle: 'd8bfd8', tomato: 'ff6347', turquoise: '40e0d0', violet: 'ee82ee', wheat: 'f5deb3', white: 'fff', whitesmoke: 'f5f5f5', yellow: 'ff0', yellowgreen: '9acd32' }; /** * Checks if a string is a CSS named color and returns its equivalent hex value, otherwise returns the original color. * @private */ function nameToHex(color) { if (typeof color !== 'string') return color; var normalizedColorName = color.toLowerCase(); return namedColorMap[normalizedColorName] ? "#" + namedColorMap[normalizedColorName] : color; } var hexRegex = /^#[a-fA-F0-9]{6}$/; var hexRgbaRegex = /^#[a-fA-F0-9]{8}$/; var reducedHexRegex = /^#[a-fA-F0-9]{3}$/; var reducedRgbaHexRegex = /^#[a-fA-F0-9]{4}$/; var rgbRegex = /^rgb\(\s*(\d{1,3})\s*(?:,)?\s*(\d{1,3})\s*(?:,)?\s*(\d{1,3})\s*\)$/i; var rgbaRegex = /^rgb(?:a)?\(\s*(\d{1,3})\s*(?:,)?\s*(\d{1,3})\s*(?:,)?\s*(\d{1,3})\s*(?:,|\/)\s*([-+]?\d*[.]?\d+[%]?)\s*\)$/i; var hslRegex = /^hsl\(\s*(\d{0,3}[.]?[0-9]+(?:deg)?)\s*(?:,)?\s*(\d{1,3}[.]?[0-9]?)%\s*(?:,)?\s*(\d{1,3}[.]?[0-9]?)%\s*\)$/i; var hslaRegex = /^hsl(?:a)?\(\s*(\d{0,3}[.]?[0-9]+(?:deg)?)\s*(?:,)?\s*(\d{1,3}[.]?[0-9]?)%\s*(?:,)?\s*(\d{1,3}[.]?[0-9]?)%\s*(?:,|\/)\s*([-+]?\d*[.]?\d+[%]?)\s*\)$/i; /** * Returns an RgbColor or RgbaColor object. This utility function is only useful * if want to extract a color component. With the color util `toColorString` you * can convert a RgbColor or RgbaColor object back to a string. * * @example * // Assigns `{ red: 255, green: 0, blue: 0 }` to color1 * const color1 = parseToRgb('rgb(255, 0, 0)'); * // Assigns `{ red: 92, green: 102, blue: 112, alpha: 0.75 }` to color2 * const color2 = parseToRgb('hsla(210, 10%, 40%, 0.75)'); */ function parseToRgb(color) { if (typeof color !== 'string') { throw new PolishedError(3); } var normalizedColor = nameToHex(color); if (normalizedColor.match(hexRegex)) { return { red: parseInt("" + normalizedColor[1] + normalizedColor[2], 16), green: parseInt("" + normalizedColor[3] + normalizedColor[4], 16), blue: parseInt("" + normalizedColor[5] + normalizedColor[6], 16) }; } if (normalizedColor.match(hexRgbaRegex)) { var alpha = parseFloat((parseInt("" + normalizedColor[7] + normalizedColor[8], 16) / 255).toFixed(2)); return { red: parseInt("" + normalizedColor[1] + normalizedColor[2], 16), green: parseInt("" + normalizedColor[3] + normalizedColor[4], 16), blue: parseInt("" + normalizedColor[5] + normalizedColor[6], 16), alpha: alpha }; } if (normalizedColor.match(reducedHexRegex)) { return { red: parseInt("" + normalizedColor[1] + normalizedColor[1], 16), green: parseInt("" + normalizedColor[2] + normalizedColor[2], 16), blue: parseInt("" + normalizedColor[3] + normalizedColor[3], 16) }; } if (normalizedColor.match(reducedRgbaHexRegex)) { var _alpha = parseFloat((parseInt("" + normalizedColor[4] + normalizedColor[4], 16) / 255).toFixed(2)); return { red: parseInt("" + normalizedColor[1] + normalizedColor[1], 16), green: parseInt("" + normalizedColor[2] + normalizedColor[2], 16), blue: parseInt("" + normalizedColor[3] + normalizedColor[3], 16), alpha: _alpha }; } var rgbMatched = rgbRegex.exec(normalizedColor); if (rgbMatched) { return { red: parseInt("" + rgbMatched[1], 10), green: parseInt("" + rgbMatched[2], 10), blue: parseInt("" + rgbMatched[3], 10) }; } var rgbaMatched = rgbaRegex.exec(normalizedColor.substring(0, 50)); if (rgbaMatched) { return { red: parseInt("" + rgbaMatched[1], 10), green: parseInt("" + rgbaMatched[2], 10), blue: parseInt("" + rgbaMatched[3], 10), alpha: parseFloat("" + rgbaMatched[4]) > 1 ? parseFloat("" + rgbaMatched[4]) / 100 : parseFloat("" + rgbaMatched[4]) }; } var hslMatched = hslRegex.exec(normalizedColor); if (hslMatched) { var hue = parseInt("" + hslMatched[1], 10); var saturation = parseInt("" + hslMatched[2], 10) / 100; var lightness = parseInt("" + hslMatched[3], 10) / 100; var rgbColorString = "rgb(" + hslToRgb(hue, saturation, lightness) + ")"; var hslRgbMatched = rgbRegex.exec(rgbColorString); if (!hslRgbMatched) { throw new PolishedError(4, normalizedColor, rgbColorString); } return { red: parseInt("" + hslRgbMatched[1], 10), green: parseInt("" + hslRgbMatched[2], 10), blue: parseInt("" + hslRgbMatched[3], 10) }; } var hslaMatched = hslaRegex.exec(normalizedColor.substring(0, 50)); if (hslaMatched) { var _hue = parseInt("" + hslaMatched[1], 10); var _saturation = parseInt("" + hslaMatched[2], 10) / 100; var _lightness = parseInt("" + hslaMatched[3], 10) / 100; var _rgbColorString = "rgb(" + hslToRgb(_hue, _saturation, _lightness) + ")"; var _hslRgbMatched = rgbRegex.exec(_rgbColorString); if (!_hslRgbMatched) { throw new PolishedError(4, normalizedColor, _rgbColorString); } return { red: parseInt("" + _hslRgbMatched[1], 10), green: parseInt("" + _hslRgbMatched[2], 10), blue: parseInt("" + _hslRgbMatched[3], 10), alpha: parseFloat("" + hslaMatched[4]) > 1 ? parseFloat("" + hslaMatched[4]) / 100 : parseFloat("" + hslaMatched[4]) }; } throw new PolishedError(5); } function rgbToHsl(color) { // make sure rgb are contained in a set of [0, 255] var red = color.red / 255; var green = color.green / 255; var blue = color.blue / 255; var max = Math.max(red, green, blue); var min = Math.min(red, green, blue); var lightness = (max + min) / 2; if (max === min) { // achromatic if (color.alpha !== undefined) { return { hue: 0, saturation: 0, lightness: lightness, alpha: color.alpha }; } else { return { hue: 0, saturation: 0, lightness: lightness }; } } var hue; var delta = max - min; var saturation = lightness > 0.5 ? delta / (2 - max - min) : delta / (max + min); switch (max) { case red: hue = (green - blue) / delta + (green < blue ? 6 : 0); break; case green: hue = (blue - red) / delta + 2; break; default: // blue case hue = (red - green) / delta + 4; break; } hue *= 60; if (color.alpha !== undefined) { return { hue: hue, saturation: saturation, lightness: lightness, alpha: color.alpha }; } return { hue: hue, saturation: saturation, lightness: lightness }; } /** * Returns an HslColor or HslaColor object. This utility function is only useful * if want to extract a color component. With the color util `toColorString` you * can convert a HslColor or HslaColor object back to a string. * * @example * // Assigns `{ hue: 0, saturation: 1, lightness: 0.5 }` to color1 * const color1 = parseToHsl('rgb(255, 0, 0)'); * // Assigns `{ hue: 128, saturation: 1, lightness: 0.5, alpha: 0.75 }` to color2 * const color2 = parseToHsl('hsla(128, 100%, 50%, 0.75)'); */ function parseToHsl(color) { // Note: At a later stage we can optimize this function as right now a hsl // color would be parsed converted to rgb values and converted back to hsl. return rgbToHsl(parseToRgb(color)); } /** * Reduces hex values if possible e.g. #ff8866 to #f86 * @private */ var reduceHexValue = function reduceHexValue(value) { if (value.length === 7 && value[1] === value[2] && value[3] === value[4] && value[5] === value[6]) { return "#" + value[1] + value[3] + value[5]; } return value; }; var reduceHexValue$1 = reduceHexValue; function numberToHex(value) { var hex = value.toString(16); return hex.length === 1 ? "0" + hex : hex; } function colorToHex(color) { return numberToHex(Math.round(color * 255)); } function convertToHex(red, green, blue) { return reduceHexValue$1("#" + colorToHex(red) + colorToHex(green) + colorToHex(blue)); } function hslToHex(hue, saturation, lightness) { return hslToRgb(hue, saturation, lightness, convertToHex); } /** * Returns a string value for the color. The returned result is the smallest possible hex notation. * * @example * // Styles as object usage * const styles = { * background: hsl(359, 0.75, 0.4), * background: hsl({ hue: 360, saturation: 0.75, lightness: 0.4 }), * } * * // styled-components usage * const div = styled.div` * background: ${hsl(359, 0.75, 0.4)}; * background: ${hsl({ hue: 360, saturation: 0.75, lightness: 0.4 })}; * ` * * // CSS in JS Output * * element { * background: "#b3191c"; * background: "#b3191c"; * } */ function hsl(value, saturation, lightness) { if (typeof value === 'number' && typeof saturation === 'number' && typeof lightness === 'number') { return hslToHex(value, saturation, lightness); } else if (typeof value === 'object' && saturation === undefined && lightness === undefined) { return hslToHex(value.hue, value.saturation, value.lightness); } throw new PolishedError(1); } /** * Returns a string value for the color. The returned result is the smallest possible rgba or hex notation. * * @example * // Styles as object usage * const styles = { * background: hsla(359, 0.75, 0.4, 0.7), * background: hsla({ hue: 360, saturation: 0.75, lightness: 0.4, alpha: 0,7 }), * background: hsla(359, 0.75, 0.4, 1), * } * * // styled-components usage * const div = styled.div` * background: ${hsla(359, 0.75, 0.4, 0.7)}; * background: ${hsla({ hue: 360, saturation: 0.75, lightness: 0.4, alpha: 0,7 })}; * background: ${hsla(359, 0.75, 0.4, 1)}; * ` * * // CSS in JS Output * * element { * background: "rgba(179,25,28,0.7)"; * background: "rgba(179,25,28,0.7)"; * background: "#b3191c"; * } */ function hsla(value, saturation, lightness, alpha) { if (typeof value === 'number' && typeof saturation === 'number' && typeof lightness === 'number' && typeof alpha === 'number') { return alpha >= 1 ? hslToHex(value, saturation, lightness) : "rgba(" + hslToRgb(value, saturation, lightness) + "," + alpha + ")"; } else if (typeof value === 'object' && saturation === undefined && lightness === undefined && alpha === undefined) { return value.alpha >= 1 ? hslToHex(value.hue, value.saturation, value.lightness) : "rgba(" + hslToRgb(value.hue, value.saturation, value.lightness) + "," + value.alpha + ")"; } throw new PolishedError(2); } /** * Returns a string value for the color. The returned result is the smallest possible hex notation. * * @example * // Styles as object usage * const styles = { * background: rgb(255, 205, 100), * background: rgb({ red: 255, green: 205, blue: 100 }), * } * * // styled-components usage * const div = styled.div` * background: ${rgb(255, 205, 100)}; * background: ${rgb({ red: 255, green: 205, blue: 100 })}; * ` * * // CSS in JS Output * * element { * background: "#ffcd64"; * background: "#ffcd64"; * } */ function rgb(value, green, blue) { if (typeof value === 'number' && typeof green === 'number' && typeof blue === 'number') { return reduceHexValue$1("#" + numberToHex(value) + numberToHex(green) + numberToHex(blue)); } else if (typeof value === 'object' && green === undefined && blue === undefined) { return reduceHexValue$1("#" + numberToHex(value.red) + numberToHex(value.green) + numberToHex(value.blue)); } throw new PolishedError(6); } /** * Returns a string value for the color. The returned result is the smallest possible rgba or hex notation. * * Can also be used to fade a color by passing a hex value or named CSS color along with an alpha value. * * @example * // Styles as object usage * const styles = { * background: rgba(255, 205, 100, 0.7), * background: rgba({ red: 255, green: 205, blue: 100, alpha: 0.7 }), * background: rgba(255, 205, 100, 1), * background: rgba('#ffffff', 0.4), * background: rgba('black', 0.7), * } * * // styled-components usage * const div = styled.div` * background: ${rgba(255, 205, 100, 0.7)}; * background: ${rgba({ red: 255, green: 205, blue: 100, alpha: 0.7 })}; * background: ${rgba(255, 205, 100, 1)}; * background: ${rgba('#ffffff', 0.4)}; * background: ${rgba('black', 0.7)}; * ` * * // CSS in JS Output * * element { * background: "rgba(255,205,100,0.7)"; * background: "rgba(255,205,100,0.7)"; * background: "#ffcd64"; * background: "rgba(255,255,255,0.4)"; * background: "rgba(0,0,0,0.7)"; * } */ function rgba(firstValue, secondValue, thirdValue, fourthValue) { if (typeof firstValue === 'string' && typeof secondValue === 'number') { var rgbValue = parseToRgb(firstValue); return "rgba(" + rgbValue.red + "," + rgbValue.green + "," + rgbValue.blue + "," + secondValue + ")"; } else if (typeof firstValue === 'number' && typeof secondValue === 'number' && typeof thirdValue === 'number' && typeof fourthValue === 'number') { return fourthValue >= 1 ? rgb(firstValue, secondValue, thirdValue) : "rgba(" + firstValue + "," + secondValue + "," + thirdValue + "," + fourthValue + ")"; } else if (typeof firstValue === 'object' && secondValue === undefined && thirdValue === undefined && fourthValue === undefined) { return firstValue.alpha >= 1 ? rgb(firstValue.red, firstValue.green, firstValue.blue) : "rgba(" + firstValue.red + "," + firstValue.green + "," + firstValue.blue + "," + firstValue.alpha + ")"; } throw new PolishedError(7); } var isRgb = function isRgb(color) { return typeof color.red === 'number' && typeof color.green === 'number' && typeof color.blue === 'number' && (typeof color.alpha !== 'number' || typeof color.alpha === 'undefined'); }; var isRgba = function isRgba(color) { return typeof color.red === 'number' && typeof color.green === 'number' && typeof color.blue === 'number' && typeof color.alpha === 'number'; }; var isHsl = function isHsl(color) { return typeof color.hue === 'number' && typeof color.saturation === 'number' && typeof color.lightness === 'number' && (typeof color.alpha !== 'number' || typeof color.alpha === 'undefined'); }; var isHsla = function isHsla(color) { return typeof color.hue === 'number' && typeof color.saturation === 'number' && typeof color.lightness === 'number' && typeof color.alpha === 'number'; }; /** * Converts a RgbColor, RgbaColor, HslColor or HslaColor object to a color string. * This util is useful in case you only know on runtime which color object is * used. Otherwise we recommend to rely on `rgb`, `rgba`, `hsl` or `hsla`. * * @example * // Styles as object usage * const styles = { * background: toColorString({ red: 255, green: 205, blue: 100 }), * background: toColorString({ red: 255, green: 205, blue: 100, alpha: 0.72 }), * background: toColorString({ hue: 240, saturation: 1, lightness: 0.5 }), * background: toColorString({ hue: 360, saturation: 0.75, lightness: 0.4, alpha: 0.72 }), * } * * // styled-components usage * const div = styled.div` * background: ${toColorString({ red: 255, green: 205, blue: 100 })}; * background: ${toColorString({ red: 255, green: 205, blue: 100, alpha: 0.72 })}; * background: ${toColorString({ hue: 240, saturation: 1, lightness: 0.5 })}; * background: ${toColorString({ hue: 360, saturation: 0.75, lightness: 0.4, alpha: 0.72 })}; * ` * * // CSS in JS Output * element { * background: "#ffcd64"; * background: "rgba(255,205,100,0.72)"; * background: "#00f"; * background: "rgba(179,25,25,0.72)"; * } */ function toColorString(color) { if (typeof color !== 'object') throw new PolishedError(8); if (isRgba(color)) return rgba(color); if (isRgb(color)) return rgb(color); if (isHsla(color)) return hsla(color); if (isHsl(color)) return hsl(color); throw new PolishedError(8); } // Type definitions taken from https://github.com/gcanti/flow-static-land/blob/master/src/Fun.js // eslint-disable-next-line no-unused-vars // eslint-disable-next-line no-unused-vars // eslint-disable-next-line no-redeclare function curried(f, length, acc) { return function fn() { // eslint-disable-next-line prefer-rest-params var combined = acc.concat(Array.prototype.slice.call(arguments)); return combined.length >= length ? f.apply(this, combined) : curried(f, length, combined); }; } // eslint-disable-next-line no-redeclare function curry(f) { // eslint-disable-line no-redeclare return curried(f, f.length, []); } /** * Changes the hue of the color. Hue is a number between 0 to 360. The first * argument for adjustHue is the amount of degrees the color is rotated around * the color wheel, always producing a positive hue value. * * @example * // Styles as object usage * const styles = { * background: adjustHue(180, '#448'), * background: adjustHue('180', 'rgba(101,100,205,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${adjustHue(180, '#448')}; * background: ${adjustHue('180', 'rgba(101,100,205,0.7)')}; * ` * * // CSS in JS Output * element { * background: "#888844"; * background: "rgba(136,136,68,0.7)"; * } */ function adjustHue(degree, color) { if (color === 'transparent') return color; var hslColor = parseToHsl(color); return toColorString(_extends({}, hslColor, { hue: hslColor.hue + parseFloat(degree) })); } // prettier-ignore curry /* :: */(adjustHue); function guard(lowerBoundary, upperBoundary, value) { return Math.max(lowerBoundary, Math.min(upperBoundary, value)); } /** * Returns a string value for the darkened color. * * @example * // Styles as object usage * const styles = { * background: darken(0.2, '#FFCD64'), * background: darken('0.2', 'rgba(255,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${darken(0.2, '#FFCD64')}; * background: ${darken('0.2', 'rgba(255,205,100,0.7)')}; * ` * * // CSS in JS Output * * element { * background: "#ffbd31"; * background: "rgba(255,189,49,0.7)"; * } */ function darken(amount, color) { if (color === 'transparent') return color; var hslColor = parseToHsl(color); return toColorString(_extends({}, hslColor, { lightness: guard(0, 1, hslColor.lightness - parseFloat(amount)) })); } // prettier-ignore curry /* :: */(darken); /** * Decreases the intensity of a color. Its range is between 0 to 1. The first * argument of the desaturate function is the amount by how much the color * intensity should be decreased. * * @example * // Styles as object usage * const styles = { * background: desaturate(0.2, '#CCCD64'), * background: desaturate('0.2', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${desaturate(0.2, '#CCCD64')}; * background: ${desaturate('0.2', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * element { * background: "#b8b979"; * background: "rgba(184,185,121,0.7)"; * } */ function desaturate(amount, color) { if (color === 'transparent') return color; var hslColor = parseToHsl(color); return toColorString(_extends({}, hslColor, { saturation: guard(0, 1, hslColor.saturation - parseFloat(amount)) })); } // prettier-ignore curry /* :: */(desaturate); /** * Returns a string value for the lightened color. * * @example * // Styles as object usage * const styles = { * background: lighten(0.2, '#CCCD64'), * background: lighten('0.2', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${lighten(0.2, '#FFCD64')}; * background: ${lighten('0.2', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * * element { * background: "#e5e6b1"; * background: "rgba(229,230,177,0.7)"; * } */ function lighten(amount, color) { if (color === 'transparent') return color; var hslColor = parseToHsl(color); return toColorString(_extends({}, hslColor, { lightness: guard(0, 1, hslColor.lightness + parseFloat(amount)) })); } // prettier-ignore curry /* :: */(lighten); /** * Mixes the two provided colors together by calculating the average of each of the RGB components weighted to the first color by the provided weight. * * @example * // Styles as object usage * const styles = { * background: mix(0.5, '#f00', '#00f') * background: mix(0.25, '#f00', '#00f') * background: mix('0.5', 'rgba(255, 0, 0, 0.5)', '#00f') * } * * // styled-components usage * const div = styled.div` * background: ${mix(0.5, '#f00', '#00f')}; * background: ${mix(0.25, '#f00', '#00f')}; * background: ${mix('0.5', 'rgba(255, 0, 0, 0.5)', '#00f')}; * ` * * // CSS in JS Output * * element { * background: "#7f007f"; * background: "#3f00bf"; * background: "rgba(63, 0, 191, 0.75)"; * } */ function mix(weight, color, otherColor) { if (color === 'transparent') return otherColor; if (otherColor === 'transparent') return color; if (weight === 0) return otherColor; var parsedColor1 = parseToRgb(color); var color1 = _extends({}, parsedColor1, { alpha: typeof parsedColor1.alpha === 'number' ? parsedColor1.alpha : 1 }); var parsedColor2 = parseToRgb(otherColor); var color2 = _extends({}, parsedColor2, { alpha: typeof parsedColor2.alpha === 'number' ? parsedColor2.alpha : 1 }); // The formula is copied from the original Sass implementation: // http://sass-lang.com/documentation/Sass/Script/Functions.html#mix-instance_method var alphaDelta = color1.alpha - color2.alpha; var x = parseFloat(weight) * 2 - 1; var y = x * alphaDelta === -1 ? x : x + alphaDelta; var z = 1 + x * alphaDelta; var weight1 = (y / z + 1) / 2.0; var weight2 = 1 - weight1; var mixedColor = { red: Math.floor(color1.red * weight1 + color2.red * weight2), green: Math.floor(color1.green * weight1 + color2.green * weight2), blue: Math.floor(color1.blue * weight1 + color2.blue * weight2), alpha: color1.alpha * parseFloat(weight) + color2.alpha * (1 - parseFloat(weight)) }; return rgba(mixedColor); } // prettier-ignore var curriedMix = curry /* :: */(mix); var mix$1 = curriedMix; /** * Increases the opacity of a color. Its range for the amount is between 0 to 1. * * * @example * // Styles as object usage * const styles = { * background: opacify(0.1, 'rgba(255, 255, 255, 0.9)'); * background: opacify(0.2, 'hsla(0, 0%, 100%, 0.5)'), * background: opacify('0.5', 'rgba(255, 0, 0, 0.2)'), * } * * // styled-components usage * const div = styled.div` * background: ${opacify(0.1, 'rgba(255, 255, 255, 0.9)')}; * background: ${opacify(0.2, 'hsla(0, 0%, 100%, 0.5)')}, * background: ${opacify('0.5', 'rgba(255, 0, 0, 0.2)')}, * ` * * // CSS in JS Output * * element { * background: "#fff"; * background: "rgba(255,255,255,0.7)"; * background: "rgba(255,0,0,0.7)"; * } */ function opacify(amount, color) { if (color === 'transparent') return color; var parsedColor = parseToRgb(color); var alpha = typeof parsedColor.alpha === 'number' ? parsedColor.alpha : 1; var colorWithAlpha = _extends({}, parsedColor, { alpha: guard(0, 1, (alpha * 100 + parseFloat(amount) * 100) / 100) }); return rgba(colorWithAlpha); } // prettier-ignore var curriedOpacify = curry /* :: */(opacify); var curriedOpacify$1 = curriedOpacify; /** * Increases the intensity of a color. Its range is between 0 to 1. The first * argument of the saturate function is the amount by how much the color * intensity should be increased. * * @example * // Styles as object usage * const styles = { * background: saturate(0.2, '#CCCD64'), * background: saturate('0.2', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${saturate(0.2, '#FFCD64')}; * background: ${saturate('0.2', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * * element { * background: "#e0e250"; * background: "rgba(224,226,80,0.7)"; * } */ function saturate(amount, color) { if (color === 'transparent') return color; var hslColor = parseToHsl(color); return toColorString(_extends({}, hslColor, { saturation: guard(0, 1, hslColor.saturation + parseFloat(amount)) })); } // prettier-ignore curry /* :: */(saturate); /** * Sets the hue of a color to the provided value. The hue range can be * from 0 and 359. * * @example * // Styles as object usage * const styles = { * background: setHue(42, '#CCCD64'), * background: setHue('244', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${setHue(42, '#CCCD64')}; * background: ${setHue('244', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * element { * background: "#cdae64"; * background: "rgba(107,100,205,0.7)"; * } */ function setHue(hue, color) { if (color === 'transparent') return color; return toColorString(_extends({}, parseToHsl(color), { hue: parseFloat(hue) })); } // prettier-ignore curry /* :: */(setHue); /** * Sets the lightness of a color to the provided value. The lightness range can be * from 0 and 1. * * @example * // Styles as object usage * const styles = { * background: setLightness(0.2, '#CCCD64'), * background: setLightness('0.75', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${setLightness(0.2, '#CCCD64')}; * background: ${setLightness('0.75', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * element { * background: "#4d4d19"; * background: "rgba(223,224,159,0.7)"; * } */ function setLightness(lightness, color) { if (color === 'transparent') return color; return toColorString(_extends({}, parseToHsl(color), { lightness: parseFloat(lightness) })); } // prettier-ignore curry /* :: */(setLightness); /** * Sets the saturation of a color to the provided value. The saturation range can be * from 0 and 1. * * @example * // Styles as object usage * const styles = { * background: setSaturation(0.2, '#CCCD64'), * background: setSaturation('0.75', 'rgba(204,205,100,0.7)'), * } * * // styled-components usage * const div = styled.div` * background: ${setSaturation(0.2, '#CCCD64')}; * background: ${setSaturation('0.75', 'rgba(204,205,100,0.7)')}; * ` * * // CSS in JS Output * element { * background: "#adad84"; * background: "rgba(228,229,76,0.7)"; * } */ function setSaturation(saturation, color) { if (color === 'transparent') return color; return toColorString(_extends({}, parseToHsl(color), { saturation: parseFloat(saturation) })); } // prettier-ignore curry /* :: */(setSaturation); /** * Shades a color by mixing it with black. `shade` can produce * hue shifts, where as `darken` manipulates the luminance channel and therefore * doesn't produce hue shifts. * * @example * // Styles as object usage * const styles = { * background: shade(0.25, '#00f') * } * * // styled-components usage * const div = styled.div` * background: ${shade(0.25, '#00f')}; * ` * * // CSS in JS Output * * element { * background: "#00003f"; * } */ function shade(percentage, color) { if (color === 'transparent') return color; return mix$1(parseFloat(percentage), 'rgb(0, 0, 0)', color); } // prettier-ignore curry /* :: */(shade); /** * Tints a color by mixing it with white. `tint` can produce * hue shifts, where as `lighten` manipulates the luminance channel and therefore * doesn't produce hue shifts. * * @example * // Styles as object usage * const styles = { * background: tint(0.25, '#00f') * } * * // styled-components usage * const div = styled.div` * background: ${tint(0.25, '#00f')}; * ` * * // CSS in JS Output * * element { * background: "#bfbfff"; * } */ function tint(percentage, color) { if (color === 'transparent') return color; return mix$1(parseFloat(percentage), 'rgb(255, 255, 255)', color); } // prettier-ignore curry /* :: */(tint); /** * Decreases the opacity of a color. Its range for the amount is between 0 to 1. * * * @example * // Styles as object usage * const styles = { * background: transparentize(0.1, '#fff'), * background: transparentize(0.2, 'hsl(0, 0%, 100%)'), * background: transparentize('0.5', 'rgba(255, 0, 0, 0.8)'), * } * * // styled-components usage * const div = styled.div` * background: ${transparentize(0.1, '#fff')}; * background: ${transparentize(0.2, 'hsl(0, 0%, 100%)')}; * background: ${transparentize('0.5', 'rgba(255, 0, 0, 0.8)')}; * ` * * // CSS in JS Output * * element { * background: "rgba(255,255,255,0.9)"; * background: "rgba(255,255,255,0.8)"; * background: "rgba(255,0,0,0.3)"; * } */ function transparentize(amount, color) { if (color === 'transparent') return color; var parsedColor = parseToRgb(color); var alpha = typeof parsedColor.alpha === 'number' ? parsedColor.alpha : 1; var colorWithAlpha = _extends({}, parsedColor, { alpha: guard(0, 1, +(alpha * 100 - parseFloat(amount) * 100).toFixed(2) / 100) }); return rgba(colorWithAlpha); } // prettier-ignore curry /* :: */(transparentize); /** * The Ease class provides a collection of easing functions for use with tween.js. */ var Easing = Object.freeze({ Linear: Object.freeze({ None: function (amount) { return amount; }, In: function (amount) { return this.None(amount); }, Out: function (amount) { return this.None(amount); }, InOut: function (amount) { return this.None(amount); }, }), Quadratic: Object.freeze({ In: function (amount) { return amount * amount; }, Out: function (amount) { return amount * (2 - amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount; } return -0.5 * (--amount * (amount - 2) - 1); }, }), Cubic: Object.freeze({ In: function (amount) { return amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount + 2); }, }), Quartic: Object.freeze({ In: function (amount) { return amount * amount * amount * amount; }, Out: function (amount) { return 1 - --amount * amount * amount * amount; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount; } return -0.5 * ((amount -= 2) * amount * amount * amount - 2); }, }), Quintic: Object.freeze({ In: function (amount) { return amount * amount * amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount * amount * amount + 2); }, }), Sinusoidal: Object.freeze({ In: function (amount) { return 1 - Math.sin(((1.0 - amount) * Math.PI) / 2); }, Out: function (amount) { return Math.sin((amount * Math.PI) / 2); }, InOut: function (amount) { return 0.5 * (1 - Math.sin(Math.PI * (0.5 - amount))); }, }), Exponential: Object.freeze({ In: function (amount) { return amount === 0 ? 0 : Math.pow(1024, amount - 1); }, Out: function (amount) { return amount === 1 ? 1 : 1 - Math.pow(2, -10 * amount); }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } if ((amount *= 2) < 1) { return 0.5 * Math.pow(1024, amount - 1); } return 0.5 * (-Math.pow(2, -10 * (amount - 1)) + 2); }, }), Circular: Object.freeze({ In: function (amount) { return 1 - Math.sqrt(1 - amount * amount); }, Out: function (amount) { return Math.sqrt(1 - --amount * amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return -0.5 * (Math.sqrt(1 - amount * amount) - 1); } return 0.5 * (Math.sqrt(1 - (amount -= 2) * amount) + 1); }, }), Elastic: Object.freeze({ In: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return -Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); }, Out: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return Math.pow(2, -10 * amount) * Math.sin((amount - 0.1) * 5 * Math.PI) + 1; }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } amount *= 2; if (amount < 1) { return -0.5 * Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); } return 0.5 * Math.pow(2, -10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI) + 1; }, }), Back: Object.freeze({ In: function (amount) { var s = 1.70158; return amount === 1 ? 1 : amount * amount * ((s + 1) * amount - s); }, Out: function (amount) { var s = 1.70158; return amount === 0 ? 0 : --amount * amount * ((s + 1) * amount + s) + 1; }, InOut: function (amount) { var s = 1.70158 * 1.525; if ((amount *= 2) < 1) { return 0.5 * (amount * amount * ((s + 1) * amount - s)); } return 0.5 * ((amount -= 2) * amount * ((s + 1) * amount + s) + 2); }, }), Bounce: Object.freeze({ In: function (amount) { return 1 - Easing.Bounce.Out(1 - amount); }, Out: function (amount) { if (amount < 1 / 2.75) { return 7.5625 * amount * amount; } else if (amount < 2 / 2.75) { return 7.5625 * (amount -= 1.5 / 2.75) * amount + 0.75; } else if (amount < 2.5 / 2.75) { return 7.5625 * (amount -= 2.25 / 2.75) * amount + 0.9375; } else { return 7.5625 * (amount -= 2.625 / 2.75) * amount + 0.984375; } }, InOut: function (amount) { if (amount < 0.5) { return Easing.Bounce.In(amount * 2) * 0.5; } return Easing.Bounce.Out(amount * 2 - 1) * 0.5 + 0.5; }, }), generatePow: function (power) { if (power === void 0) { power = 4; } power = power < Number.EPSILON ? Number.EPSILON : power; power = power > 10000 ? 10000 : power; return { In: function (amount) { return Math.pow(amount, power); }, Out: function (amount) { return 1 - Math.pow((1 - amount), power); }, InOut: function (amount) { if (amount < 0.5) { return Math.pow((amount * 2), power) / 2; } return (1 - Math.pow((2 - amount * 2), power)) / 2 + 0.5; }, }; }, }); var now = function () { return performance.now(); }; /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tween */ var Group = /** @class */ (function () { function Group() { this._tweens = {}; this._tweensAddedDuringUpdate = {}; } Group.prototype.getAll = function () { var _this = this; return Object.keys(this._tweens).map(function (tweenId) { return _this._tweens[tweenId]; }); }; Group.prototype.removeAll = function () { this._tweens = {}; }; Group.prototype.add = function (tween) { this._tweens[tween.getId()] = tween; this._tweensAddedDuringUpdate[tween.getId()] = tween; }; Group.prototype.remove = function (tween) { delete this._tweens[tween.getId()]; delete this._tweensAddedDuringUpdate[tween.getId()]; }; Group.prototype.update = function (time, preserve) { if (time === void 0) { time = now(); } if (preserve === void 0) { preserve = false; } var tweenIds = Object.keys(this._tweens); if (tweenIds.length === 0) { return false; } // Tweens are updated in "batches". If you add a new tween during an // update, then the new tween will be updated in the next batch. // If you remove a tween during an update, it may or may not be updated. // However, if the removed tween was added during the current batch, // then it will not be updated. while (tweenIds.length > 0) { this._tweensAddedDuringUpdate = {}; for (var i = 0; i < tweenIds.length; i++) { var tween = this._tweens[tweenIds[i]]; var autoStart = !preserve; if (tween && tween.update(time, autoStart) === false && !preserve) { delete this._tweens[tweenIds[i]]; } } tweenIds = Object.keys(this._tweensAddedDuringUpdate); } return true; }; return Group; }()); /** * */ var Interpolation = { Linear: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.Linear; if (k < 0) { return fn(v[0], v[1], f); } if (k > 1) { return fn(v[m], v[m - 1], m - f); } return fn(v[i], v[i + 1 > m ? m : i + 1], f - i); }, Bezier: function (v, k) { var b = 0; var n = v.length - 1; var pw = Math.pow; var bn = Interpolation.Utils.Bernstein; for (var i = 0; i <= n; i++) { b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i); } return b; }, CatmullRom: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.CatmullRom; if (v[0] === v[m]) { if (k < 0) { i = Math.floor((f = m * (1 + k))); } return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i); } else { if (k < 0) { return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]); } if (k > 1) { return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]); } return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i); } }, Utils: { Linear: function (p0, p1, t) { return (p1 - p0) * t + p0; }, Bernstein: function (n, i) { var fc = Interpolation.Utils.Factorial; return fc(n) / fc(i) / fc(n - i); }, Factorial: (function () { var a = [1]; return function (n) { var s = 1; if (a[n]) { return a[n]; } for (var i = n; i > 1; i--) { s *= i; } a[n] = s; return s; }; })(), CatmullRom: function (p0, p1, p2, p3, t) { var v0 = (p2 - p0) * 0.5; var v1 = (p3 - p1) * 0.5; var t2 = t * t; var t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; }, }, }; /** * Utils */ var Sequence = /** @class */ (function () { function Sequence() { } Sequence.nextId = function () { return Sequence._nextId++; }; Sequence._nextId = 0; return Sequence; }()); var mainGroup = new Group(); /** * Tween.js - Licensed under the MIT license * https://github.com/tweenjs/tween.js * ---------------------------------------------- * * See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors. * Thank you all, you're awesome! */ var Tween = /** @class */ (function () { function Tween(_object, _group) { if (_group === void 0) { _group = mainGroup; } this._object = _object; this._group = _group; this._isPaused = false; this._pauseStart = 0; this._valuesStart = {}; this._valuesEnd = {}; this._valuesStartRepeat = {}; this._duration = 1000; this._isDynamic = false; this._initialRepeat = 0; this._repeat = 0; this._yoyo = false; this._isPlaying = false; this._reversed = false; this._delayTime = 0; this._startTime = 0; this._easingFunction = Easing.Linear.None; this._interpolationFunction = Interpolation.Linear; // eslint-disable-next-line this._chainedTweens = []; this._onStartCallbackFired = false; this._onEveryStartCallbackFired = false; this._id = Sequence.nextId(); this._isChainStopped = false; this._propertiesAreSetUp = false; this._goToEnd = false; } Tween.prototype.getId = function () { return this._id; }; Tween.prototype.isPlaying = function () { return this._isPlaying; }; Tween.prototype.isPaused = function () { return this._isPaused; }; Tween.prototype.getDuration = function () { return this._duration; }; Tween.prototype.to = function (target, duration) { if (duration === void 0) { duration = 1000; } if (this._isPlaying) throw new Error('Can not call Tween.to() while Tween is already started or paused. Stop the Tween first.'); this._valuesEnd = target; this._propertiesAreSetUp = false; this._duration = duration < 0 ? 0 : duration; return this; }; Tween.prototype.duration = function (duration) { if (duration === void 0) { duration = 1000; } this._duration = duration < 0 ? 0 : duration; return this; }; Tween.prototype.dynamic = function (dynamic) { if (dynamic === void 0) { dynamic = false; } this._isDynamic = dynamic; return this; }; Tween.prototype.start = function (time, overrideStartingValues) { if (time === void 0) { time = now(); } if (overrideStartingValues === void 0) { overrideStartingValues = false; } if (this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.add(this); this._repeat = this._initialRepeat; if (this._reversed) { // If we were reversed (f.e. using the yoyo feature) then we need to // flip the tween direction back to forward. this._reversed = false; for (var property in this._valuesStartRepeat) { this._swapEndStartRepeatValues(property); this._valuesStart[property] = this._valuesStartRepeat[property]; } } this._isPlaying = true; this._isPaused = false; this._onStartCallbackFired = false; this._onEveryStartCallbackFired = false; this._isChainStopped = false; this._startTime = time; this._startTime += this._delayTime; if (!this._propertiesAreSetUp || overrideStartingValues) { this._propertiesAreSetUp = true; // If dynamic is not enabled, clone the end values instead of using the passed-in end values. if (!this._isDynamic) { var tmp = {}; for (var prop in this._valuesEnd) tmp[prop] = this._valuesEnd[prop]; this._valuesEnd = tmp; } this._setupProperties(this._object, this._valuesStart, this._valuesEnd, this._valuesStartRepeat, overrideStartingValues); } return this; }; Tween.prototype.startFromCurrentValues = function (time) { return this.start(time, true); }; Tween.prototype._setupProperties = function (_object, _valuesStart, _valuesEnd, _valuesStartRepeat, overrideStartingValues) { for (var property in _valuesEnd) { var startValue = _object[property]; var startValueIsArray = Array.isArray(startValue); var propType = startValueIsArray ? 'array' : typeof startValue; var isInterpolationList = !startValueIsArray && Array.isArray(_valuesEnd[property]); // If `to()` specifies a property that doesn't exist in the source object, // we should not set that property in the object if (propType === 'undefined' || propType === 'function') { continue; } // Check if an Array was provided as property value if (isInterpolationList) { var endValues = _valuesEnd[property]; if (endValues.length === 0) { continue; } // Handle an array of relative values. // Creates a local copy of the Array with the start value at the front var temp = [startValue]; for (var i = 0, l = endValues.length; i < l; i += 1) { var value = this._handleRelativeValue(startValue, endValues[i]); if (isNaN(value)) { isInterpolationList = false; console.warn('Found invalid interpolation list. Skipping.'); break; } temp.push(value); } if (isInterpolationList) { // if (_valuesStart[property] === undefined) { // handle end values only the first time. NOT NEEDED? setupProperties is now guarded by _propertiesAreSetUp. _valuesEnd[property] = temp; // } } } // handle the deepness of the values if ((propType === 'object' || startValueIsArray) && startValue && !isInterpolationList) { _valuesStart[property] = startValueIsArray ? [] : {}; var nestedObject = startValue; for (var prop in nestedObject) { _valuesStart[property][prop] = nestedObject[prop]; } // TODO? repeat nested values? And yoyo? And array values? _valuesStartRepeat[property] = startValueIsArray ? [] : {}; var endValues = _valuesEnd[property]; // If dynamic is not enabled, clone the end values instead of using the passed-in end values. if (!this._isDynamic) { var tmp = {}; for (var prop in endValues) tmp[prop] = endValues[prop]; _valuesEnd[property] = endValues = tmp; } this._setupProperties(nestedObject, _valuesStart[property], endValues, _valuesStartRepeat[property], overrideStartingValues); } else { // Save the starting value, but only once unless override is requested. if (typeof _valuesStart[property] === 'undefined' || overrideStartingValues) { _valuesStart[property] = startValue; } if (!startValueIsArray) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings } if (isInterpolationList) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStartRepeat[property] = _valuesEnd[property].slice().reverse(); } else { _valuesStartRepeat[property] = _valuesStart[property] || 0; } } } }; Tween.prototype.stop = function () { if (!this._isChainStopped) { this._isChainStopped = true; this.stopChainedTweens(); } if (!this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.remove(this); this._isPlaying = false; this._isPaused = false; if (this._onStopCallback) { this._onStopCallback(this._object); } return this; }; Tween.prototype.end = function () { this._goToEnd = true; this.update(Infinity); return this; }; Tween.prototype.pause = function (time) { if (time === void 0) { time = now(); } if (this._isPaused || !this._isPlaying) { return this; } this._isPaused = true; this._pauseStart = time; // eslint-disable-next-line this._group && this._group.remove(this); return this; }; Tween.prototype.resume = function (time) { if (time === void 0) { time = now(); } if (!this._isPaused || !this._isPlaying) { return this; } this._isPaused = false; this._startTime += time - this._pauseStart; this._pauseStart = 0; // eslint-disable-next-line this._group && this._group.add(this); return this; }; Tween.prototype.stopChainedTweens = function () { for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { this._chainedTweens[i].stop(); } return this; }; Tween.prototype.group = function (group) { if (group === void 0) { group = mainGroup; } this._group = group; return this; }; Tween.prototype.delay = function (amount) { if (amount === void 0) { amount = 0; } this._delayTime = amount; return this; }; Tween.prototype.repeat = function (times) { if (times === void 0) { times = 0; } this._initialRepeat = times; this._repeat = times; return this; }; Tween.prototype.repeatDelay = function (amount) { this._repeatDelayTime = amount; return this; }; Tween.prototype.yoyo = function (yoyo) { if (yoyo === void 0) { yoyo = false; } this._yoyo = yoyo; return this; }; Tween.prototype.easing = function (easingFunction) { if (easingFunction === void 0) { easingFunction = Easing.Linear.None; } this._easingFunction = easingFunction; return this; }; Tween.prototype.interpolation = function (interpolationFunction) { if (interpolationFunction === void 0) { interpolationFunction = Interpolation.Linear; } this._interpolationFunction = interpolationFunction; return this; }; // eslint-disable-next-line Tween.prototype.chain = function () { var tweens = []; for (var _i = 0; _i < arguments.length; _i++) { tweens[_i] = arguments[_i]; } this._chainedTweens = tweens; return this; }; Tween.prototype.onStart = function (callback) { this._onStartCallback = callback; return this; }; Tween.prototype.onEveryStart = function (callback) { this._onEveryStartCallback = callback; return this; }; Tween.prototype.onUpdate = function (callback) { this._onUpdateCallback = callback; return this; }; Tween.prototype.onRepeat = function (callback) { this._onRepeatCallback = callback; return this; }; Tween.prototype.onComplete = function (callback) { this._onCompleteCallback = callback; return this; }; Tween.prototype.onStop = function (callback) { this._onStopCallback = callback; return this; }; /** * @returns true if the tween is still playing after the update, false * otherwise (calling update on a paused tween still returns true because * it is still playing, just paused). */ Tween.prototype.update = function (time, autoStart) { var _this = this; var _a; if (time === void 0) { time = now(); } if (autoStart === void 0) { autoStart = true; } if (this._isPaused) return true; var property; var endTime = this._startTime + this._duration; if (!this._goToEnd && !this._isPlaying) { if (time > endTime) return false; if (autoStart) this.start(time, true); } this._goToEnd = false; if (time < this._startTime) { return true; } if (this._onStartCallbackFired === false) { if (this._onStartCallback) { this._onStartCallback(this._object); } this._onStartCallbackFired = true; } if (this._onEveryStartCallbackFired === false) { if (this._onEveryStartCallback) { this._onEveryStartCallback(this._object); } this._onEveryStartCallbackFired = true; } var elapsedTime = time - this._startTime; var durationAndDelay = this._duration + ((_a = this._repeatDelayTime) !== null && _a !== void 0 ? _a : this._delayTime); var totalTime = this._duration + this._repeat * durationAndDelay; var calculateElapsedPortion = function () { if (_this._duration === 0) return 1; if (elapsedTime > totalTime) { return 1; } var timesRepeated = Math.trunc(elapsedTime / durationAndDelay); var timeIntoCurrentRepeat = elapsedTime - timesRepeated * durationAndDelay; // TODO use %? // const timeIntoCurrentRepeat = elapsedTime % durationAndDelay var portion = Math.min(timeIntoCurrentRepeat / _this._duration, 1); if (portion === 0 && elapsedTime === _this._duration) { return 1; } return portion; }; var elapsed = calculateElapsedPortion(); var value = this._easingFunction(elapsed); // properties transformations this._updateProperties(this._object, this._valuesStart, this._valuesEnd, value); if (this._onUpdateCallback) { this._onUpdateCallback(this._object, elapsed); } if (this._duration === 0 || elapsedTime >= this._duration) { if (this._repeat > 0) { var completeCount = Math.min(Math.trunc((elapsedTime - this._duration) / durationAndDelay) + 1, this._repeat); if (isFinite(this._repeat)) { this._repeat -= completeCount; } // Reassign starting values, restart by making startTime = now for (property in this._valuesStartRepeat) { if (!this._yoyo && typeof this._valuesEnd[property] === 'string') { this._valuesStartRepeat[property] = // eslint-disable-next-line // @ts-ignore FIXME? this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]); } if (this._yoyo) { this._swapEndStartRepeatValues(property); } this._valuesStart[property] = this._valuesStartRepeat[property]; } if (this._yoyo) { this._reversed = !this._reversed; } this._startTime += durationAndDelay * completeCount; if (this._onRepeatCallback) { this._onRepeatCallback(this._object); } this._onEveryStartCallbackFired = false; return true; } else { if (this._onCompleteCallback) { this._onCompleteCallback(this._object); } for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { // Make the chained tweens start exactly at the time they should, // even if the `update()` method was called way past the duration of the tween this._chainedTweens[i].start(this._startTime + this._duration, false); } this._isPlaying = false; return false; } } return true; }; Tween.prototype._updateProperties = function (_object, _valuesStart, _valuesEnd, value) { for (var property in _valuesEnd) { // Don't update properties that do not exist in the source object if (_valuesStart[property] === undefined) { continue; } var start = _valuesStart[property] || 0; var end = _valuesEnd[property]; var startIsArray = Array.isArray(_object[property]); var endIsArray = Array.isArray(end); var isInterpolationList = !startIsArray && endIsArray; if (isInterpolationList) { _object[property] = this._interpolationFunction(end, value); } else if (typeof end === 'object' && end) { // eslint-disable-next-line // @ts-ignore FIXME? this._updateProperties(_object[property], start, end, value); } else { // Parses relative end values with start as base (e.g.: +10, -3) end = this._handleRelativeValue(start, end); // Protect against non numeric properties. if (typeof end === 'number') { // eslint-disable-next-line // @ts-ignore FIXME? _object[property] = start + (end - start) * value; } } } }; Tween.prototype._handleRelativeValue = function (start, end) { if (typeof end !== 'string') { return end; } if (end.charAt(0) === '+' || end.charAt(0) === '-') { return start + parseFloat(end); } return parseFloat(end); }; Tween.prototype._swapEndStartRepeatValues = function (property) { var tmp = this._valuesStartRepeat[property]; var endValue = this._valuesEnd[property]; if (typeof endValue === 'string') { this._valuesStartRepeat[property] = this._valuesStartRepeat[property] + parseFloat(endValue); } else { this._valuesStartRepeat[property] = this._valuesEnd[property]; } this._valuesEnd[property] = tmp; }; return Tween; }()); /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tweens. */ var TWEEN = mainGroup; // This is the best way to export things in a way that's compatible with both ES // Modules and CommonJS, without build hacks, and so as not to break the // existing API. // https://github.com/rollup/rollup/issues/1961#issuecomment-423037881 TWEEN.getAll.bind(TWEEN); TWEEN.removeAll.bind(TWEEN); TWEEN.add.bind(TWEEN); TWEEN.remove.bind(TWEEN); var update = TWEEN.update.bind(TWEEN); function styleInject(css, ref) { if (ref === void 0) ref = {}; var insertAt = ref.insertAt; if (!css || typeof document === 'undefined') { return; } var head = document.head || document.getElementsByTagName('head')[0]; var style = document.createElement('style'); style.type = 'text/css'; if (insertAt === 'top') { if (head.firstChild) { head.insertBefore(style, head.firstChild); } else { head.appendChild(style); } } else { head.appendChild(style); } if (style.styleSheet) { style.styleSheet.cssText = css; } else { style.appendChild(document.createTextNode(css)); } } var css_248z = ".scene-nav-info {\n bottom: 5px;\n width: 100%;\n text-align: center;\n color: slategrey;\n opacity: 0.7;\n font-size: 10px;\n}\n\n.scene-tooltip {\n top: 0;\n color: lavender;\n font-size: 15px;\n}\n\n.scene-nav-info, .scene-tooltip {\n position: absolute;\n font-family: sans-serif;\n pointer-events: none;\n user-select: none;\n}\n\n.scene-container canvas:focus {\n outline: none;\n}"; styleInject(css_248z); function _iterableToArrayLimit(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) return; f = !1; } else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0); } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return; } finally { if (o) throw n; } } return a; } } function _toPrimitive(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey(t) { var i = _toPrimitive(t, "string"); return "symbol" == typeof i ? i : String(i); } function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _slicedToArray(arr, i) { return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _unsupportedIterableToArray(arr, i) || _nonIterableRest(); } function _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); } function _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); } function _arrayWithHoles(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var three$1 = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists : { WebGLRenderer: WebGLRenderer, Scene: Scene, PerspectiveCamera: PerspectiveCamera, Raycaster: Raycaster, SRGBColorSpace: SRGBColorSpace, TextureLoader: TextureLoader, Vector2: Vector2, Vector3: Vector3, Box3: Box3, Color: Color, Mesh: Mesh, SphereGeometry: SphereGeometry, MeshBasicMaterial: MeshBasicMaterial, BackSide: BackSide, EventDispatcher: EventDispatcher, MOUSE: MOUSE, Quaternion: Quaternion, Spherical: Spherical, Clock: Clock }; var threeRenderObjects = index$2({ props: { width: { "default": window.innerWidth, onChange: function onChange(width, state, prevWidth) { isNaN(width) && (state.width = prevWidth); } }, height: { "default": window.innerHeight, onChange: function onChange(height, state, prevHeight) { isNaN(height) && (state.height = prevHeight); } }, backgroundColor: { "default": '#000011' }, backgroundImageUrl: {}, onBackgroundImageLoaded: {}, showNavInfo: { "default": true }, skyRadius: { "default": 50000 }, objects: { "default": [] }, lights: { "default": [] }, enablePointerInteraction: { "default": true, onChange: function onChange(_, state) { // Reset hover state state.hoverObj = null; if (state.toolTipElem) state.toolTipElem.innerHTML = ''; }, triggerUpdate: false }, lineHoverPrecision: { "default": 1, triggerUpdate: false }, hoverOrderComparator: { "default": function _default() { return -1; }, triggerUpdate: false }, // keep existing order by default hoverFilter: { "default": function _default() { return true; }, triggerUpdate: false }, // exclude objects from interaction tooltipContent: { triggerUpdate: false }, hoverDuringDrag: { "default": false, triggerUpdate: false }, clickAfterDrag: { "default": false, triggerUpdate: false }, onHover: { "default": function _default() {}, triggerUpdate: false }, onClick: { "default": function _default() {}, triggerUpdate: false }, onRightClick: { triggerUpdate: false } }, methods: { tick: function tick(state) { if (state.initialised) { state.controls.update && state.controls.update(state.clock.getDelta()); // timedelta is required for fly controls state.postProcessingComposer ? state.postProcessingComposer.render() // if using postprocessing, switch the output to it : state.renderer.render(state.scene, state.camera); state.extraRenderers.forEach(function (r) { return r.render(state.scene, state.camera); }); if (state.enablePointerInteraction) { // Update tooltip and trigger onHover events var topObject = null; if (state.hoverDuringDrag || !state.isPointerDragging) { var intersects = this.intersectingObjects(state.pointerPos.x, state.pointerPos.y).filter(function (d) { return state.hoverFilter(d.object); }).sort(function (a, b) { return state.hoverOrderComparator(a.object, b.object); }); var topIntersect = intersects.length ? intersects[0] : null; topObject = topIntersect ? topIntersect.object : null; state.intersectionPoint = topIntersect ? topIntersect.point : null; } if (topObject !== state.hoverObj) { state.onHover(topObject, state.hoverObj); state.toolTipElem.innerHTML = topObject ? index$1(state.tooltipContent)(topObject) || '' : ''; state.hoverObj = topObject; } } update(); // update camera animation tweens } return this; }, getPointerPos: function getPointerPos(state) { var _state$pointerPos = state.pointerPos, x = _state$pointerPos.x, y = _state$pointerPos.y; return { x: x, y: y }; }, cameraPosition: function cameraPosition(state, position, lookAt, transitionDuration) { var camera = state.camera; // Setter if (position && state.initialised) { var finalPos = position; var finalLookAt = lookAt || { x: 0, y: 0, z: 0 }; if (!transitionDuration) { // no animation setCameraPos(finalPos); setLookAt(finalLookAt); } else { var camPos = Object.assign({}, camera.position); var camLookAt = getLookAt(); new Tween(camPos).to(finalPos, transitionDuration).easing(Easing.Quadratic.Out).onUpdate(setCameraPos).start(); // Face direction in 1/3rd of time new Tween(camLookAt).to(finalLookAt, transitionDuration / 3).easing(Easing.Quadratic.Out).onUpdate(setLookAt).start(); } return this; } // Getter return Object.assign({}, camera.position, { lookAt: getLookAt() }); // function setCameraPos(pos) { var x = pos.x, y = pos.y, z = pos.z; if (x !== undefined) camera.position.x = x; if (y !== undefined) camera.position.y = y; if (z !== undefined) camera.position.z = z; } function setLookAt(lookAt) { var lookAtVect = new three$1.Vector3(lookAt.x, lookAt.y, lookAt.z); if (state.controls.target) { state.controls.target = lookAtVect; } else { // Fly controls doesn't have target attribute camera.lookAt(lookAtVect); // note: lookAt may be overridden by other controls in some cases } } function getLookAt() { return Object.assign(new three$1.Vector3(0, 0, -1000).applyQuaternion(camera.quaternion).add(camera.position)); } }, zoomToFit: function zoomToFit(state) { var transitionDuration = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0; var padding = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 10; for (var _len = arguments.length, bboxArgs = new Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) { bboxArgs[_key - 3] = arguments[_key]; } return this.fitToBbox(this.getBbox.apply(this, bboxArgs), transitionDuration, padding); }, fitToBbox: function fitToBbox(state, bbox) { var transitionDuration = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0; var padding = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 10; // based on https://discourse.threejs.org/t/camera-zoom-to-fit-object/936/24 var camera = state.camera; if (bbox) { var center = new three$1.Vector3(0, 0, 0); // reset camera aim to center var maxBoxSide = Math.max.apply(Math, _toConsumableArray(Object.entries(bbox).map(function (_ref) { var _ref2 = _slicedToArray(_ref, 2), coordType = _ref2[0], coords = _ref2[1]; return Math.max.apply(Math, _toConsumableArray(coords.map(function (c) { return Math.abs(center[coordType] - c); }))); }))) * 2; // find distance that fits whole bbox within padded fov var paddedFov = (1 - padding * 2 / state.height) * camera.fov; var fitHeightDistance = maxBoxSide / Math.atan(paddedFov * Math.PI / 180); var fitWidthDistance = fitHeightDistance / camera.aspect; var distance = Math.max(fitHeightDistance, fitWidthDistance); if (distance > 0) { var newCameraPosition = center.clone().sub(camera.position).normalize().multiplyScalar(-distance); this.cameraPosition(newCameraPosition, center, transitionDuration); } } return this; }, getBbox: function getBbox(state) { var objFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () { return true; }; var box = new three$1.Box3(new three$1.Vector3(0, 0, 0), new three$1.Vector3(0, 0, 0)); var objs = state.objects.filter(objFilter); if (!objs.length) return null; objs.forEach(function (obj) { return box.expandByObject(obj); }); // extract global x,y,z min/max return Object.assign.apply(Object, _toConsumableArray(['x', 'y', 'z'].map(function (c) { return _defineProperty({}, c, [box.min[c], box.max[c]]); }))); }, getScreenCoords: function getScreenCoords(state, x, y, z) { var vec = new three$1.Vector3(x, y, z); vec.project(this.camera()); // project to the camera plane return { // align relative pos to canvas dimensions x: (vec.x + 1) * state.width / 2, y: -(vec.y - 1) * state.height / 2 }; }, getSceneCoords: function getSceneCoords(state, screenX, screenY) { var distance = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0; var relCoords = new three$1.Vector2(screenX / state.width * 2 - 1, -(screenY / state.height) * 2 + 1); var raycaster = new three$1.Raycaster(); raycaster.setFromCamera(relCoords, state.camera); return Object.assign({}, raycaster.ray.at(distance, new three$1.Vector3())); }, intersectingObjects: function intersectingObjects(state, x, y) { var relCoords = new three$1.Vector2(x / state.width * 2 - 1, -(y / state.height) * 2 + 1); var raycaster = new three$1.Raycaster(); raycaster.params.Line.threshold = state.lineHoverPrecision; // set linePrecision raycaster.setFromCamera(relCoords, state.camera); return raycaster.intersectObjects(state.objects, true); }, renderer: function renderer(state) { return state.renderer; }, scene: function scene(state) { return state.scene; }, camera: function camera(state) { return state.camera; }, postProcessingComposer: function postProcessingComposer(state) { return state.postProcessingComposer; }, controls: function controls(state) { return state.controls; }, tbControls: function tbControls(state) { return state.controls; } // to be deprecated }, stateInit: function stateInit() { return { scene: new three$1.Scene(), camera: new three$1.PerspectiveCamera(), clock: new three$1.Clock() }; }, init: function init(domNode, state) { var _ref4 = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}, _ref4$controlType = _ref4.controlType, controlType = _ref4$controlType === void 0 ? 'trackball' : _ref4$controlType, _ref4$rendererConfig = _ref4.rendererConfig, rendererConfig = _ref4$rendererConfig === void 0 ? {} : _ref4$rendererConfig, _ref4$extraRenderers = _ref4.extraRenderers, extraRenderers = _ref4$extraRenderers === void 0 ? [] : _ref4$extraRenderers, _ref4$waitForLoadComp = _ref4.waitForLoadComplete, waitForLoadComplete = _ref4$waitForLoadComp === void 0 ? true : _ref4$waitForLoadComp; // Wipe DOM domNode.innerHTML = ''; // Add relative container domNode.appendChild(state.container = document.createElement('div')); state.container.className = 'scene-container'; state.container.style.position = 'relative'; // Add nav info section state.container.appendChild(state.navInfo = document.createElement('div')); state.navInfo.className = 'scene-nav-info'; state.navInfo.textContent = { orbit: 'Left-click: rotate, Mouse-wheel/middle-click: zoom, Right-click: pan', trackball: 'Left-click: rotate, Mouse-wheel/middle-click: zoom, Right-click: pan', fly: 'WASD: move, R|F: up | down, Q|E: roll, up|down: pitch, left|right: yaw' }[controlType] || ''; state.navInfo.style.display = state.showNavInfo ? null : 'none'; // Setup tooltip state.toolTipElem = document.createElement('div'); state.toolTipElem.classList.add('scene-tooltip'); state.container.appendChild(state.toolTipElem); // Capture pointer coords on move or touchstart state.pointerPos = new three$1.Vector2(); state.pointerPos.x = -2; // Initialize off canvas state.pointerPos.y = -2; ['pointermove', 'pointerdown'].forEach(function (evType) { return state.container.addEventListener(evType, function (ev) { // track click state evType === 'pointerdown' && (state.isPointerPressed = true); // detect point drag !state.isPointerDragging && ev.type === 'pointermove' && (ev.pressure > 0 || state.isPointerPressed) // ev.pressure always 0 on Safari, so we used the isPointerPressed tracker && (ev.pointerType !== 'touch' || ev.movementX === undefined || [ev.movementX, ev.movementY].some(function (m) { return Math.abs(m) > 1; })) // relax drag trigger sensitivity on touch events && (state.isPointerDragging = true); if (state.enablePointerInteraction) { // update the pointer pos var offset = getOffset(state.container); state.pointerPos.x = ev.pageX - offset.left; state.pointerPos.y = ev.pageY - offset.top; // Move tooltip state.toolTipElem.style.top = "".concat(state.pointerPos.y, "px"); state.toolTipElem.style.left = "".concat(state.pointerPos.x, "px"); // adjust horizontal position to not exceed canvas boundaries state.toolTipElem.style.transform = "translate(-".concat(state.pointerPos.x / state.width * 100, "%, ").concat( // flip to above if near bottom state.height - state.pointerPos.y < 100 ? 'calc(-100% - 8px)' : '21px', ")"); } function getOffset(el) { var rect = el.getBoundingClientRect(), scrollLeft = window.pageXOffset || document.documentElement.scrollLeft, scrollTop = window.pageYOffset || document.documentElement.scrollTop; return { top: rect.top + scrollTop, left: rect.left + scrollLeft }; } }, { passive: true }); }); // Handle click events on objs state.container.addEventListener('pointerup', function (ev) { state.isPointerPressed = false; if (state.isPointerDragging) { state.isPointerDragging = false; if (!state.clickAfterDrag) return; // don't trigger onClick after pointer drag (camera motion via controls) } requestAnimationFrame(function () { // trigger click events asynchronously, to allow hoverObj to be set (on frame) if (ev.button === 0) { // left-click state.onClick(state.hoverObj || null, ev, state.intersectionPoint); // trigger background clicks with null } if (ev.button === 2 && state.onRightClick) { // right-click state.onRightClick(state.hoverObj || null, ev, state.intersectionPoint); } }); }, { passive: true, capture: true }); // use capture phase to prevent propagation blocking from controls (specifically for fly) state.container.addEventListener('contextmenu', function (ev) { if (state.onRightClick) ev.preventDefault(); // prevent default contextmenu behavior and allow pointerup to fire instead }); // Setup renderer, camera and controls state.renderer = new three$1.WebGLRenderer(Object.assign({ antialias: true, alpha: true }, rendererConfig)); state.renderer.setPixelRatio(Math.min(2, window.devicePixelRatio)); // clamp device pixel ratio state.container.appendChild(state.renderer.domElement); // Setup extra renderers state.extraRenderers = extraRenderers; state.extraRenderers.forEach(function (r) { // overlay them on top of main renderer r.domElement.style.position = 'absolute'; r.domElement.style.top = '0px'; r.domElement.style.pointerEvents = 'none'; state.container.appendChild(r.domElement); }); // configure post-processing composer state.postProcessingComposer = new EffectComposer(state.renderer); state.postProcessingComposer.addPass(new RenderPass(state.scene, state.camera)); // render scene as first pass // configure controls state.controls = new { trackball: TrackballControls, orbit: OrbitControls, fly: FlyControls }[controlType](state.camera, state.renderer.domElement); if (controlType === 'fly') { state.controls.movementSpeed = 300; state.controls.rollSpeed = Math.PI / 6; state.controls.dragToLook = true; } if (controlType === 'trackball' || controlType === 'orbit') { state.controls.minDistance = 0.1; state.controls.maxDistance = state.skyRadius; state.controls.addEventListener('start', function () { state.controlsEngaged = true; }); state.controls.addEventListener('change', function () { if (state.controlsEngaged) { state.controlsDragging = true; } }); state.controls.addEventListener('end', function () { state.controlsEngaged = false; state.controlsDragging = false; }); } [state.renderer, state.postProcessingComposer].concat(_toConsumableArray(state.extraRenderers)).forEach(function (r) { return r.setSize(state.width, state.height); }); state.camera.aspect = state.width / state.height; state.camera.updateProjectionMatrix(); state.camera.position.z = 1000; // add sky state.scene.add(state.skysphere = new three$1.Mesh()); state.skysphere.visible = false; state.loadComplete = state.scene.visible = !waitForLoadComplete; window.scene = state.scene; }, update: function update(state, changedProps) { // resize canvas if (state.width && state.height && (changedProps.hasOwnProperty('width') || changedProps.hasOwnProperty('height'))) { state.container.style.width = "".concat(state.width, "px"); state.container.style.height = "".concat(state.height, "px"); [state.renderer, state.postProcessingComposer].concat(_toConsumableArray(state.extraRenderers)).forEach(function (r) { return r.setSize(state.width, state.height); }); state.camera.aspect = state.width / state.height; state.camera.updateProjectionMatrix(); } if (changedProps.hasOwnProperty('skyRadius') && state.skyRadius) { state.controls.hasOwnProperty('maxDistance') && changedProps.skyRadius && (state.controls.maxDistance = Math.min(state.controls.maxDistance, state.skyRadius)); state.camera.far = state.skyRadius * 2.5; state.camera.updateProjectionMatrix(); state.skysphere.geometry = new three$1.SphereGeometry(state.skyRadius); } if (changedProps.hasOwnProperty('backgroundColor')) { var alpha = parseToRgb(state.backgroundColor).alpha; if (alpha === undefined) alpha = 1; state.renderer.setClearColor(new three$1.Color(curriedOpacify$1(1, state.backgroundColor)), alpha); } if (changedProps.hasOwnProperty('backgroundImageUrl')) { if (!state.backgroundImageUrl) { state.skysphere.visible = false; state.skysphere.material.map = null; !state.loadComplete && finishLoad(); } else { new three$1.TextureLoader().load(state.backgroundImageUrl, function (texture) { texture.colorSpace = three$1.SRGBColorSpace; state.skysphere.material = new three$1.MeshBasicMaterial({ map: texture, side: three$1.BackSide }); state.skysphere.visible = true; // triggered when background image finishes loading (asynchronously to allow 1 frame to load texture) state.onBackgroundImageLoaded && setTimeout(state.onBackgroundImageLoaded); !state.loadComplete && finishLoad(); }); } } changedProps.hasOwnProperty('showNavInfo') && (state.navInfo.style.display = state.showNavInfo ? null : 'none'); if (changedProps.hasOwnProperty('lights')) { (changedProps.lights || []).forEach(function (light) { return state.scene.remove(light); }); // Clear the place state.lights.forEach(function (light) { return state.scene.add(light); }); // Add to scene } if (changedProps.hasOwnProperty('objects')) { (changedProps.objects || []).forEach(function (obj) { return state.scene.remove(obj); }); // Clear the place state.objects.forEach(function (obj) { return state.scene.add(obj); }); // Add to scene } // function finishLoad() { state.loadComplete = state.scene.visible = true; } } }); function linkKapsule (kapsulePropName, kapsuleType) { var dummyK = new kapsuleType(); // To extract defaults dummyK._destructor && dummyK._destructor(); return { linkProp: function linkProp(prop) { // link property config return { "default": dummyK[prop](), onChange: function onChange(v, state) { state[kapsulePropName][prop](v); }, triggerUpdate: false }; }, linkMethod: function linkMethod(method) { // link method pass-through return function (state) { var kapsuleInstance = state[kapsulePropName]; for (var _len = arguments.length, args = new Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) { args[_key - 1] = arguments[_key]; } var returnVal = kapsuleInstance[method].apply(kapsuleInstance, args); return returnVal === kapsuleInstance ? this // chain based on the parent object, not the inner kapsule : returnVal; }; } }; } var three = window.THREE ? window.THREE // Prefer consumption from global THREE, if exists : { AmbientLight: AmbientLight, DirectionalLight: DirectionalLight, Vector3: Vector3, REVISION: REVISION }; // var CAMERA_DISTANCE2NODES_FACTOR = 170; // // Expose config from forceGraph var bindFG = linkKapsule('forceGraph', threeForcegraph); var linkedFGProps = Object.assign.apply(Object, _toConsumableArray$4(['jsonUrl', 'graphData', 'numDimensions', 'dagMode', 'dagLevelDistance', 'dagNodeFilter', 'onDagError', 'nodeRelSize', 'nodeId', 'nodeVal', 'nodeResolution', 'nodeColor', 'nodeAutoColorBy', 'nodeOpacity', 'nodeVisibility', 'nodeThreeObject', 'nodeThreeObjectExtend', 'linkSource', 'linkTarget', 'linkVisibility', 'linkColor', 'linkAutoColorBy', 'linkOpacity', 'linkWidth', 'linkResolution', 'linkCurvature', 'linkCurveRotation', 'linkMaterial', 'linkThreeObject', 'linkThreeObjectExtend', 'linkPositionUpdate', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowRelPos', 'linkDirectionalArrowResolution', 'linkDirectionalParticles', 'linkDirectionalParticleSpeed', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'linkDirectionalParticleResolution', 'forceEngine', 'd3AlphaDecay', 'd3VelocityDecay', 'd3AlphaMin', 'ngraphPhysics', 'warmupTicks', 'cooldownTicks', 'cooldownTime', 'onEngineTick', 'onEngineStop'].map(function (p) { return _defineProperty$3({}, p, bindFG.linkProp(p)); }))); var linkedFGMethods = Object.assign.apply(Object, _toConsumableArray$4(['refresh', 'getGraphBbox', 'd3Force', 'd3ReheatSimulation', 'emitParticle'].map(function (p) { return _defineProperty$3({}, p, bindFG.linkMethod(p)); }))); // Expose config from renderObjs var bindRenderObjs = linkKapsule('renderObjs', threeRenderObjects); var linkedRenderObjsProps = Object.assign.apply(Object, _toConsumableArray$4(['width', 'height', 'backgroundColor', 'showNavInfo', 'enablePointerInteraction'].map(function (p) { return _defineProperty$3({}, p, bindRenderObjs.linkProp(p)); }))); var linkedRenderObjsMethods = Object.assign.apply(Object, _toConsumableArray$4(['lights', 'cameraPosition', 'postProcessingComposer'].map(function (p) { return _defineProperty$3({}, p, bindRenderObjs.linkMethod(p)); })).concat([{ graph2ScreenCoords: bindRenderObjs.linkMethod('getScreenCoords'), screen2GraphCoords: bindRenderObjs.linkMethod('getSceneCoords') }])); // var _3dForceGraph = index$2({ props: _objectSpread2$2(_objectSpread2$2({ nodeLabel: { "default": 'name', triggerUpdate: false }, linkLabel: { "default": 'name', triggerUpdate: false }, linkHoverPrecision: { "default": 1, onChange: function onChange(p, state) { return state.renderObjs.lineHoverPrecision(p); }, triggerUpdate: false }, enableNavigationControls: { "default": true, onChange: function onChange(enable, state) { var controls = state.renderObjs.controls(); if (controls) { controls.enabled = enable; // trigger mouseup on re-enable to prevent sticky controls enable && controls.domElement && controls.domElement.dispatchEvent(new PointerEvent('pointerup')); } }, triggerUpdate: false }, enableNodeDrag: { "default": true, triggerUpdate: false }, onNodeDrag: { "default": function _default() {}, triggerUpdate: false }, onNodeDragEnd: { "default": function _default() {}, triggerUpdate: false }, onNodeClick: { triggerUpdate: false }, onNodeRightClick: { triggerUpdate: false }, onNodeHover: { triggerUpdate: false }, onLinkClick: { triggerUpdate: false }, onLinkRightClick: { triggerUpdate: false }, onLinkHover: { triggerUpdate: false }, onBackgroundClick: { triggerUpdate: false }, onBackgroundRightClick: { triggerUpdate: false } }, linkedFGProps), linkedRenderObjsProps), methods: _objectSpread2$2(_objectSpread2$2({ zoomToFit: function zoomToFit(state, transitionDuration, padding) { var _state$forceGraph; for (var _len = arguments.length, bboxArgs = new Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) { bboxArgs[_key - 3] = arguments[_key]; } state.renderObjs.fitToBbox((_state$forceGraph = state.forceGraph).getGraphBbox.apply(_state$forceGraph, bboxArgs), transitionDuration, padding); return this; }, pauseAnimation: function pauseAnimation(state) { if (state.animationFrameRequestId !== null) { cancelAnimationFrame(state.animationFrameRequestId); state.animationFrameRequestId = null; } return this; }, resumeAnimation: function resumeAnimation(state) { if (state.animationFrameRequestId === null) { this._animationCycle(); } return this; }, _animationCycle: function _animationCycle(state) { if (state.enablePointerInteraction) { // reset canvas cursor (override dragControls cursor) this.renderer().domElement.style.cursor = null; } // Frame cycle state.forceGraph.tickFrame(); state.renderObjs.tick(); state.animationFrameRequestId = requestAnimationFrame(this._animationCycle); }, scene: function scene(state) { return state.renderObjs.scene(); }, // Expose scene camera: function camera(state) { return state.renderObjs.camera(); }, // Expose camera renderer: function renderer(state) { return state.renderObjs.renderer(); }, // Expose renderer controls: function controls(state) { return state.renderObjs.controls(); }, // Expose controls tbControls: function tbControls(state) { return state.renderObjs.tbControls(); }, // To be deprecated _destructor: function _destructor() { this.pauseAnimation(); this.graphData({ nodes: [], links: [] }); } }, linkedFGMethods), linkedRenderObjsMethods), stateInit: function stateInit(_ref5) { var controlType = _ref5.controlType, rendererConfig = _ref5.rendererConfig, extraRenderers = _ref5.extraRenderers; var forceGraph = new threeForcegraph(); return { forceGraph: forceGraph, renderObjs: threeRenderObjects({ controlType: controlType, rendererConfig: rendererConfig, extraRenderers: extraRenderers }).objects([forceGraph]) // Populate scene .lights([new three.AmbientLight(0xcccccc, Math.PI), new three.DirectionalLight(0xffffff, 0.6 * Math.PI)]) }; }, init: function init(domNode, state) { // Wipe DOM domNode.innerHTML = ''; // Add relative container domNode.appendChild(state.container = document.createElement('div')); state.container.style.position = 'relative'; // Add renderObjs var roDomNode = document.createElement('div'); state.container.appendChild(roDomNode); state.renderObjs(roDomNode); var camera = state.renderObjs.camera(); var renderer = state.renderObjs.renderer(); var controls = state.renderObjs.controls(); controls.enabled = !!state.enableNavigationControls; state.lastSetCameraZ = camera.position.z; // Add info space var infoElem; state.container.appendChild(infoElem = document.createElement('div')); infoElem.className = 'graph-info-msg'; infoElem.textContent = ''; // config forcegraph state.forceGraph.onLoading(function () { infoElem.textContent = 'Loading...'; }).onFinishLoading(function () { infoElem.textContent = ''; }).onUpdate(function () { // sync graph data structures state.graphData = state.forceGraph.graphData(); // re-aim camera, if still in default position (not user modified) if (camera.position.x === 0 && camera.position.y === 0 && camera.position.z === state.lastSetCameraZ && state.graphData.nodes.length) { camera.lookAt(state.forceGraph.position); state.lastSetCameraZ = camera.position.z = Math.cbrt(state.graphData.nodes.length) * CAMERA_DISTANCE2NODES_FACTOR; } }).onFinishUpdate(function () { // Setup node drag interaction if (state._dragControls) { var curNodeDrag = state.graphData.nodes.find(function (node) { return node.__initialFixedPos && !node.__disposeControlsAfterDrag; }); // detect if there's a node being dragged using the existing drag controls if (curNodeDrag) { curNodeDrag.__disposeControlsAfterDrag = true; // postpone previous controls disposal until drag ends } else { state._dragControls.dispose(); // cancel previous drag controls } state._dragControls = undefined; } if (state.enableNodeDrag && state.enablePointerInteraction && state.forceEngine === 'd3') { // Can't access node positions programmatically in ngraph var dragControls = state._dragControls = new DragControls(state.graphData.nodes.map(function (node) { return node.__threeObj; }).filter(function (obj) { return obj; }), camera, renderer.domElement); dragControls.addEventListener('dragstart', function (event) { controls.enabled = false; // Disable controls while dragging // track drag object movement event.object.__initialPos = event.object.position.clone(); event.object.__prevPos = event.object.position.clone(); var node = getGraphObj(event.object).__data; !node.__initialFixedPos && (node.__initialFixedPos = { fx: node.fx, fy: node.fy, fz: node.fz }); !node.__initialPos && (node.__initialPos = { x: node.x, y: node.y, z: node.z }); // lock node ['x', 'y', 'z'].forEach(function (c) { return node["f".concat(c)] = node[c]; }); // drag cursor renderer.domElement.classList.add('grabbable'); }); dragControls.addEventListener('drag', function (event) { var nodeObj = getGraphObj(event.object); if (!event.object.hasOwnProperty('__graphObjType')) { // If dragging a child of the node, update the node object instead var initPos = event.object.__initialPos; var prevPos = event.object.__prevPos; var _newPos = event.object.position; nodeObj.position.add(_newPos.clone().sub(prevPos)); // translate node object by the motion delta prevPos.copy(_newPos); _newPos.copy(initPos); // reset child back to its initial position } var node = nodeObj.__data; var newPos = nodeObj.position; var translate = { x: newPos.x - node.x, y: newPos.y - node.y, z: newPos.z - node.z }; // Move fx/fy/fz (and x/y/z) of nodes based on object new position ['x', 'y', 'z'].forEach(function (c) { return node["f".concat(c)] = node[c] = newPos[c]; }); state.forceGraph.d3AlphaTarget(0.3) // keep engine running at low intensity throughout drag .resetCountdown(); // prevent freeze while dragging node.__dragged = true; state.onNodeDrag(node, translate); }); dragControls.addEventListener('dragend', function (event) { delete event.object.__initialPos; // remove tracking attributes delete event.object.__prevPos; var node = getGraphObj(event.object).__data; // dispose previous controls if needed if (node.__disposeControlsAfterDrag) { dragControls.dispose(); delete node.__disposeControlsAfterDrag; } var initFixedPos = node.__initialFixedPos; var initPos = node.__initialPos; var translate = { x: initPos.x - node.x, y: initPos.y - node.y, z: initPos.z - node.z }; if (initFixedPos) { ['x', 'y', 'z'].forEach(function (c) { var fc = "f".concat(c); if (initFixedPos[fc] === undefined) { delete node[fc]; } }); delete node.__initialFixedPos; delete node.__initialPos; if (node.__dragged) { delete node.__dragged; state.onNodeDragEnd(node, translate); } } state.forceGraph.d3AlphaTarget(0) // release engine low intensity .resetCountdown(); // let the engine readjust after releasing fixed nodes if (state.enableNavigationControls) { controls.enabled = true; // Re-enable controls controls.domElement && controls.domElement.ownerDocument && controls.domElement.ownerDocument.dispatchEvent( // simulate mouseup to ensure the controls don't take over after dragend new PointerEvent('pointerup', { pointerType: 'touch' })); } // clear cursor renderer.domElement.classList.remove('grabbable'); }); } }); // config renderObjs three.REVISION < 155 && (state.renderObjs.renderer().useLegacyLights = false); // force behavior for three < 155 state.renderObjs.hoverOrderComparator(function (a, b) { // Prioritize graph objects var aObj = getGraphObj(a); if (!aObj) return 1; var bObj = getGraphObj(b); if (!bObj) return -1; // Prioritize nodes over links var isNode = function isNode(o) { return o.__graphObjType === 'node'; }; return isNode(bObj) - isNode(aObj); }).tooltipContent(function (obj) { var graphObj = getGraphObj(obj); return graphObj ? index$1(state["".concat(graphObj.__graphObjType, "Label")])(graphObj.__data) || '' : ''; }).hoverDuringDrag(false).onHover(function (obj) { // Update tooltip and trigger onHover events var hoverObj = getGraphObj(obj); if (hoverObj !== state.hoverObj) { var prevObjType = state.hoverObj ? state.hoverObj.__graphObjType : null; var prevObjData = state.hoverObj ? state.hoverObj.__data : null; var objType = hoverObj ? hoverObj.__graphObjType : null; var objData = hoverObj ? hoverObj.__data : null; if (prevObjType && prevObjType !== objType) { // Hover out var fn = state["on".concat(prevObjType === 'node' ? 'Node' : 'Link', "Hover")]; fn && fn(null, prevObjData); } if (objType) { // Hover in var _fn = state["on".concat(objType === 'node' ? 'Node' : 'Link', "Hover")]; _fn && _fn(objData, prevObjType === objType ? prevObjData : null); } // set pointer if hovered object is clickable renderer.domElement.classList[hoverObj && state["on".concat(objType === 'node' ? 'Node' : 'Link', "Click")] || !hoverObj && state.onBackgroundClick ? 'add' : 'remove']('clickable'); state.hoverObj = hoverObj; } }).clickAfterDrag(false).onClick(function (obj, ev) { var graphObj = getGraphObj(obj); if (graphObj) { var fn = state["on".concat(graphObj.__graphObjType === 'node' ? 'Node' : 'Link', "Click")]; fn && fn(graphObj.__data, ev); } else { state.onBackgroundClick && state.onBackgroundClick(ev); } }).onRightClick(function (obj, ev) { // Handle right-click events var graphObj = getGraphObj(obj); if (graphObj) { var fn = state["on".concat(graphObj.__graphObjType === 'node' ? 'Node' : 'Link', "RightClick")]; fn && fn(graphObj.__data, ev); } else { state.onBackgroundRightClick && state.onBackgroundRightClick(ev); } }); // // Kick-off renderer this._animationCycle(); } }); // function getGraphObj(object) { var obj = object; // recurse up object chain until finding the graph object while (obj && !obj.hasOwnProperty('__graphObjType')) { obj = obj.parent; } return obj; } return _3dForceGraph; })); //# sourceMappingURL=3d-force-graph.js.map