// Version 1.43.5 force-graph - https://github.com/vasturiano/force-graph (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.ForceGraph = factory()); })(this, (function () { 'use strict'; function styleInject(css, ref) { if ( ref === void 0 ) ref = {}; var insertAt = ref.insertAt; if (!css || typeof document === 'undefined') { return; } var head = document.head || document.getElementsByTagName('head')[0]; var style = document.createElement('style'); style.type = 'text/css'; if (insertAt === 'top') { if (head.firstChild) { head.insertBefore(style, head.firstChild); } else { head.appendChild(style); } } else { head.appendChild(style); } if (style.styleSheet) { style.styleSheet.cssText = css; } else { style.appendChild(document.createTextNode(css)); } } var css_248z = ".force-graph-container canvas {\n display: block;\n user-select: none;\n outline: none;\n -webkit-tap-highlight-color: transparent;\n}\n\n.force-graph-container .graph-tooltip {\n position: absolute;\n top: 0;\n font-family: sans-serif;\n font-size: 16px;\n padding: 4px;\n border-radius: 3px;\n color: #eee;\n background: rgba(0,0,0,0.65);\n visibility: hidden; /* by default */\n}\n\n.force-graph-container .clickable {\n cursor: pointer;\n}\n\n.force-graph-container .grabbable {\n cursor: move;\n cursor: grab;\n cursor: -moz-grab;\n cursor: -webkit-grab;\n}\n\n.force-graph-container .grabbable:active {\n cursor: grabbing;\n cursor: -moz-grabbing;\n cursor: -webkit-grabbing;\n}\n"; styleInject(css_248z); function _construct(t, e, r) { if (_isNativeReflectConstruct()) return Reflect.construct.apply(null, arguments); var o = [null]; o.push.apply(o, e); var p = new (t.bind.apply(t, o))(); return r && _setPrototypeOf(p, r.prototype), p; } function _isNativeReflectConstruct() { try { var t = !Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); } catch (t) {} return (_isNativeReflectConstruct = function () { return !!t; })(); } function _iterableToArrayLimit$2(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) return; f = !1; } else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0); } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return; } finally { if (o) throw n; } } return a; } } function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; } function _objectSpread2(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; } function _toPrimitive$3(t, r) { if ("object" != typeof t || !t) return t; var e = t[Symbol.toPrimitive]; if (void 0 !== e) { var i = e.call(t, r || "default"); if ("object" != typeof i) return i; throw new TypeError("@@toPrimitive must return a primitive value."); } return ("string" === r ? String : Number)(t); } function _toPropertyKey$3(t) { var i = _toPrimitive$3(t, "string"); return "symbol" == typeof i ? i : String(i); } function _typeof$1(o) { "@babel/helpers - typeof"; return _typeof$1 = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof$1(o); } function _defineProperty(obj, key, value) { key = _toPropertyKey$3(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf ? Object.setPrototypeOf.bind() : function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _slicedToArray$2(arr, i) { return _arrayWithHoles$2(arr) || _iterableToArrayLimit$2(arr, i) || _unsupportedIterableToArray$3(arr, i) || _nonIterableRest$2(); } function _toConsumableArray$2(arr) { return _arrayWithoutHoles$2(arr) || _iterableToArray$2(arr) || _unsupportedIterableToArray$3(arr) || _nonIterableSpread$2(); } function _arrayWithoutHoles$2(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$3(arr); } function _arrayWithHoles$2(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray$2(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$3(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$3(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$3(o, minLen); } function _arrayLikeToArray$3(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$2() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest$2() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } var xhtml = "http://www.w3.org/1999/xhtml"; var namespaces = { svg: "http://www.w3.org/2000/svg", xhtml: xhtml, xlink: "http://www.w3.org/1999/xlink", xml: "http://www.w3.org/XML/1998/namespace", xmlns: "http://www.w3.org/2000/xmlns/" }; function namespace(name) { var prefix = name += "", i = prefix.indexOf(":"); if (i >= 0 && (prefix = name.slice(0, i)) !== "xmlns") name = name.slice(i + 1); return namespaces.hasOwnProperty(prefix) ? {space: namespaces[prefix], local: name} : name; // eslint-disable-line no-prototype-builtins } function creatorInherit(name) { return function() { var document = this.ownerDocument, uri = this.namespaceURI; return uri === xhtml && document.documentElement.namespaceURI === xhtml ? document.createElement(name) : document.createElementNS(uri, name); }; } function creatorFixed(fullname) { return function() { return this.ownerDocument.createElementNS(fullname.space, fullname.local); }; } function creator(name) { var fullname = namespace(name); return (fullname.local ? creatorFixed : creatorInherit)(fullname); } function none() {} function selector(selector) { return selector == null ? none : function() { return this.querySelector(selector); }; } function selection_select(select) { if (typeof select !== "function") select = selector(select); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) { if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) { if ("__data__" in node) subnode.__data__ = node.__data__; subgroup[i] = subnode; } } } return new Selection$1(subgroups, this._parents); } // Given something array like (or null), returns something that is strictly an // array. This is used to ensure that array-like objects passed to d3.selectAll // or selection.selectAll are converted into proper arrays when creating a // selection; we don’t ever want to create a selection backed by a live // HTMLCollection or NodeList. However, note that selection.selectAll will use a // static NodeList as a group, since it safely derived from querySelectorAll. function array(x) { return x == null ? [] : Array.isArray(x) ? x : Array.from(x); } function empty() { return []; } function selectorAll(selector) { return selector == null ? empty : function() { return this.querySelectorAll(selector); }; } function arrayAll(select) { return function() { return array(select.apply(this, arguments)); }; } function selection_selectAll(select) { if (typeof select === "function") select = arrayAll(select); else select = selectorAll(select); for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { subgroups.push(select.call(node, node.__data__, i, group)); parents.push(node); } } } return new Selection$1(subgroups, parents); } function matcher(selector) { return function() { return this.matches(selector); }; } function childMatcher(selector) { return function(node) { return node.matches(selector); }; } var find$1 = Array.prototype.find; function childFind(match) { return function() { return find$1.call(this.children, match); }; } function childFirst() { return this.firstElementChild; } function selection_selectChild(match) { return this.select(match == null ? childFirst : childFind(typeof match === "function" ? match : childMatcher(match))); } var filter = Array.prototype.filter; function children() { return Array.from(this.children); } function childrenFilter(match) { return function() { return filter.call(this.children, match); }; } function selection_selectChildren(match) { return this.selectAll(match == null ? children : childrenFilter(typeof match === "function" ? match : childMatcher(match))); } function selection_filter(match) { if (typeof match !== "function") match = matcher(match); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) { if ((node = group[i]) && match.call(node, node.__data__, i, group)) { subgroup.push(node); } } } return new Selection$1(subgroups, this._parents); } function sparse(update) { return new Array(update.length); } function selection_enter() { return new Selection$1(this._enter || this._groups.map(sparse), this._parents); } function EnterNode(parent, datum) { this.ownerDocument = parent.ownerDocument; this.namespaceURI = parent.namespaceURI; this._next = null; this._parent = parent; this.__data__ = datum; } EnterNode.prototype = { constructor: EnterNode, appendChild: function(child) { return this._parent.insertBefore(child, this._next); }, insertBefore: function(child, next) { return this._parent.insertBefore(child, next); }, querySelector: function(selector) { return this._parent.querySelector(selector); }, querySelectorAll: function(selector) { return this._parent.querySelectorAll(selector); } }; function constant$4(x) { return function() { return x; }; } function bindIndex(parent, group, enter, update, exit, data) { var i = 0, node, groupLength = group.length, dataLength = data.length; // Put any non-null nodes that fit into update. // Put any null nodes into enter. // Put any remaining data into enter. for (; i < dataLength; ++i) { if (node = group[i]) { node.__data__ = data[i]; update[i] = node; } else { enter[i] = new EnterNode(parent, data[i]); } } // Put any non-null nodes that don’t fit into exit. for (; i < groupLength; ++i) { if (node = group[i]) { exit[i] = node; } } } function bindKey(parent, group, enter, update, exit, data, key) { var i, node, nodeByKeyValue = new Map, groupLength = group.length, dataLength = data.length, keyValues = new Array(groupLength), keyValue; // Compute the key for each node. // If multiple nodes have the same key, the duplicates are added to exit. for (i = 0; i < groupLength; ++i) { if (node = group[i]) { keyValues[i] = keyValue = key.call(node, node.__data__, i, group) + ""; if (nodeByKeyValue.has(keyValue)) { exit[i] = node; } else { nodeByKeyValue.set(keyValue, node); } } } // Compute the key for each datum. // If there a node associated with this key, join and add it to update. // If there is not (or the key is a duplicate), add it to enter. for (i = 0; i < dataLength; ++i) { keyValue = key.call(parent, data[i], i, data) + ""; if (node = nodeByKeyValue.get(keyValue)) { update[i] = node; node.__data__ = data[i]; nodeByKeyValue.delete(keyValue); } else { enter[i] = new EnterNode(parent, data[i]); } } // Add any remaining nodes that were not bound to data to exit. for (i = 0; i < groupLength; ++i) { if ((node = group[i]) && (nodeByKeyValue.get(keyValues[i]) === node)) { exit[i] = node; } } } function datum(node) { return node.__data__; } function selection_data(value, key) { if (!arguments.length) return Array.from(this, datum); var bind = key ? bindKey : bindIndex, parents = this._parents, groups = this._groups; if (typeof value !== "function") value = constant$4(value); for (var m = groups.length, update = new Array(m), enter = new Array(m), exit = new Array(m), j = 0; j < m; ++j) { var parent = parents[j], group = groups[j], groupLength = group.length, data = arraylike(value.call(parent, parent && parent.__data__, j, parents)), dataLength = data.length, enterGroup = enter[j] = new Array(dataLength), updateGroup = update[j] = new Array(dataLength), exitGroup = exit[j] = new Array(groupLength); bind(parent, group, enterGroup, updateGroup, exitGroup, data, key); // Now connect the enter nodes to their following update node, such that // appendChild can insert the materialized enter node before this node, // rather than at the end of the parent node. for (var i0 = 0, i1 = 0, previous, next; i0 < dataLength; ++i0) { if (previous = enterGroup[i0]) { if (i0 >= i1) i1 = i0 + 1; while (!(next = updateGroup[i1]) && ++i1 < dataLength); previous._next = next || null; } } } update = new Selection$1(update, parents); update._enter = enter; update._exit = exit; return update; } // Given some data, this returns an array-like view of it: an object that // exposes a length property and allows numeric indexing. Note that unlike // selectAll, this isn’t worried about “live” collections because the resulting // array will only be used briefly while data is being bound. (It is possible to // cause the data to change while iterating by using a key function, but please // don’t; we’d rather avoid a gratuitous copy.) function arraylike(data) { return typeof data === "object" && "length" in data ? data // Array, TypedArray, NodeList, array-like : Array.from(data); // Map, Set, iterable, string, or anything else } function selection_exit() { return new Selection$1(this._exit || this._groups.map(sparse), this._parents); } function selection_join(onenter, onupdate, onexit) { var enter = this.enter(), update = this, exit = this.exit(); if (typeof onenter === "function") { enter = onenter(enter); if (enter) enter = enter.selection(); } else { enter = enter.append(onenter + ""); } if (onupdate != null) { update = onupdate(update); if (update) update = update.selection(); } if (onexit == null) exit.remove(); else onexit(exit); return enter && update ? enter.merge(update).order() : update; } function selection_merge(context) { var selection = context.selection ? context.selection() : context; for (var groups0 = this._groups, groups1 = selection._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) { for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group0[i] || group1[i]) { merge[i] = node; } } } for (; j < m0; ++j) { merges[j] = groups0[j]; } return new Selection$1(merges, this._parents); } function selection_order() { for (var groups = this._groups, j = -1, m = groups.length; ++j < m;) { for (var group = groups[j], i = group.length - 1, next = group[i], node; --i >= 0;) { if (node = group[i]) { if (next && node.compareDocumentPosition(next) ^ 4) next.parentNode.insertBefore(node, next); next = node; } } } return this; } function selection_sort(compare) { if (!compare) compare = ascending; function compareNode(a, b) { return a && b ? compare(a.__data__, b.__data__) : !a - !b; } for (var groups = this._groups, m = groups.length, sortgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, sortgroup = sortgroups[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group[i]) { sortgroup[i] = node; } } sortgroup.sort(compareNode); } return new Selection$1(sortgroups, this._parents).order(); } function ascending(a, b) { return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; } function selection_call() { var callback = arguments[0]; arguments[0] = this; callback.apply(null, arguments); return this; } function selection_nodes() { return Array.from(this); } function selection_node() { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length; i < n; ++i) { var node = group[i]; if (node) return node; } } return null; } function selection_size() { let size = 0; for (const node of this) ++size; // eslint-disable-line no-unused-vars return size; } function selection_empty() { return !this.node(); } function selection_each(callback) { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) { if (node = group[i]) callback.call(node, node.__data__, i, group); } } return this; } function attrRemove$1(name) { return function() { this.removeAttribute(name); }; } function attrRemoveNS$1(fullname) { return function() { this.removeAttributeNS(fullname.space, fullname.local); }; } function attrConstant$1(name, value) { return function() { this.setAttribute(name, value); }; } function attrConstantNS$1(fullname, value) { return function() { this.setAttributeNS(fullname.space, fullname.local, value); }; } function attrFunction$1(name, value) { return function() { var v = value.apply(this, arguments); if (v == null) this.removeAttribute(name); else this.setAttribute(name, v); }; } function attrFunctionNS$1(fullname, value) { return function() { var v = value.apply(this, arguments); if (v == null) this.removeAttributeNS(fullname.space, fullname.local); else this.setAttributeNS(fullname.space, fullname.local, v); }; } function selection_attr(name, value) { var fullname = namespace(name); if (arguments.length < 2) { var node = this.node(); return fullname.local ? node.getAttributeNS(fullname.space, fullname.local) : node.getAttribute(fullname); } return this.each((value == null ? (fullname.local ? attrRemoveNS$1 : attrRemove$1) : (typeof value === "function" ? (fullname.local ? attrFunctionNS$1 : attrFunction$1) : (fullname.local ? attrConstantNS$1 : attrConstant$1)))(fullname, value)); } function defaultView(node) { return (node.ownerDocument && node.ownerDocument.defaultView) // node is a Node || (node.document && node) // node is a Window || node.defaultView; // node is a Document } function styleRemove$1(name) { return function() { this.style.removeProperty(name); }; } function styleConstant$1(name, value, priority) { return function() { this.style.setProperty(name, value, priority); }; } function styleFunction$1(name, value, priority) { return function() { var v = value.apply(this, arguments); if (v == null) this.style.removeProperty(name); else this.style.setProperty(name, v, priority); }; } function selection_style(name, value, priority) { return arguments.length > 1 ? this.each((value == null ? styleRemove$1 : typeof value === "function" ? styleFunction$1 : styleConstant$1)(name, value, priority == null ? "" : priority)) : styleValue(this.node(), name); } function styleValue(node, name) { return node.style.getPropertyValue(name) || defaultView(node).getComputedStyle(node, null).getPropertyValue(name); } function propertyRemove(name) { return function() { delete this[name]; }; } function propertyConstant(name, value) { return function() { this[name] = value; }; } function propertyFunction(name, value) { return function() { var v = value.apply(this, arguments); if (v == null) delete this[name]; else this[name] = v; }; } function selection_property(name, value) { return arguments.length > 1 ? this.each((value == null ? propertyRemove : typeof value === "function" ? propertyFunction : propertyConstant)(name, value)) : this.node()[name]; } function classArray(string) { return string.trim().split(/^|\s+/); } function classList(node) { return node.classList || new ClassList(node); } function ClassList(node) { this._node = node; this._names = classArray(node.getAttribute("class") || ""); } ClassList.prototype = { add: function(name) { var i = this._names.indexOf(name); if (i < 0) { this._names.push(name); this._node.setAttribute("class", this._names.join(" ")); } }, remove: function(name) { var i = this._names.indexOf(name); if (i >= 0) { this._names.splice(i, 1); this._node.setAttribute("class", this._names.join(" ")); } }, contains: function(name) { return this._names.indexOf(name) >= 0; } }; function classedAdd(node, names) { var list = classList(node), i = -1, n = names.length; while (++i < n) list.add(names[i]); } function classedRemove(node, names) { var list = classList(node), i = -1, n = names.length; while (++i < n) list.remove(names[i]); } function classedTrue(names) { return function() { classedAdd(this, names); }; } function classedFalse(names) { return function() { classedRemove(this, names); }; } function classedFunction(names, value) { return function() { (value.apply(this, arguments) ? classedAdd : classedRemove)(this, names); }; } function selection_classed(name, value) { var names = classArray(name + ""); if (arguments.length < 2) { var list = classList(this.node()), i = -1, n = names.length; while (++i < n) if (!list.contains(names[i])) return false; return true; } return this.each((typeof value === "function" ? classedFunction : value ? classedTrue : classedFalse)(names, value)); } function textRemove() { this.textContent = ""; } function textConstant$1(value) { return function() { this.textContent = value; }; } function textFunction$1(value) { return function() { var v = value.apply(this, arguments); this.textContent = v == null ? "" : v; }; } function selection_text(value) { return arguments.length ? this.each(value == null ? textRemove : (typeof value === "function" ? textFunction$1 : textConstant$1)(value)) : this.node().textContent; } function htmlRemove() { this.innerHTML = ""; } function htmlConstant(value) { return function() { this.innerHTML = value; }; } function htmlFunction(value) { return function() { var v = value.apply(this, arguments); this.innerHTML = v == null ? "" : v; }; } function selection_html(value) { return arguments.length ? this.each(value == null ? htmlRemove : (typeof value === "function" ? htmlFunction : htmlConstant)(value)) : this.node().innerHTML; } function raise() { if (this.nextSibling) this.parentNode.appendChild(this); } function selection_raise() { return this.each(raise); } function lower() { if (this.previousSibling) this.parentNode.insertBefore(this, this.parentNode.firstChild); } function selection_lower() { return this.each(lower); } function selection_append(name) { var create = typeof name === "function" ? name : creator(name); return this.select(function() { return this.appendChild(create.apply(this, arguments)); }); } function constantNull() { return null; } function selection_insert(name, before) { var create = typeof name === "function" ? name : creator(name), select = before == null ? constantNull : typeof before === "function" ? before : selector(before); return this.select(function() { return this.insertBefore(create.apply(this, arguments), select.apply(this, arguments) || null); }); } function remove() { var parent = this.parentNode; if (parent) parent.removeChild(this); } function selection_remove() { return this.each(remove); } function selection_cloneShallow() { var clone = this.cloneNode(false), parent = this.parentNode; return parent ? parent.insertBefore(clone, this.nextSibling) : clone; } function selection_cloneDeep() { var clone = this.cloneNode(true), parent = this.parentNode; return parent ? parent.insertBefore(clone, this.nextSibling) : clone; } function selection_clone(deep) { return this.select(deep ? selection_cloneDeep : selection_cloneShallow); } function selection_datum(value) { return arguments.length ? this.property("__data__", value) : this.node().__data__; } function contextListener(listener) { return function(event) { listener.call(this, event, this.__data__); }; } function parseTypenames$1(typenames) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); return {type: t, name: name}; }); } function onRemove(typename) { return function() { var on = this.__on; if (!on) return; for (var j = 0, i = -1, m = on.length, o; j < m; ++j) { if (o = on[j], (!typename.type || o.type === typename.type) && o.name === typename.name) { this.removeEventListener(o.type, o.listener, o.options); } else { on[++i] = o; } } if (++i) on.length = i; else delete this.__on; }; } function onAdd(typename, value, options) { return function() { var on = this.__on, o, listener = contextListener(value); if (on) for (var j = 0, m = on.length; j < m; ++j) { if ((o = on[j]).type === typename.type && o.name === typename.name) { this.removeEventListener(o.type, o.listener, o.options); this.addEventListener(o.type, o.listener = listener, o.options = options); o.value = value; return; } } this.addEventListener(typename.type, listener, options); o = {type: typename.type, name: typename.name, value: value, listener: listener, options: options}; if (!on) this.__on = [o]; else on.push(o); }; } function selection_on(typename, value, options) { var typenames = parseTypenames$1(typename + ""), i, n = typenames.length, t; if (arguments.length < 2) { var on = this.node().__on; if (on) for (var j = 0, m = on.length, o; j < m; ++j) { for (i = 0, o = on[j]; i < n; ++i) { if ((t = typenames[i]).type === o.type && t.name === o.name) { return o.value; } } } return; } on = value ? onAdd : onRemove; for (i = 0; i < n; ++i) this.each(on(typenames[i], value, options)); return this; } function dispatchEvent(node, type, params) { var window = defaultView(node), event = window.CustomEvent; if (typeof event === "function") { event = new event(type, params); } else { event = window.document.createEvent("Event"); if (params) event.initEvent(type, params.bubbles, params.cancelable), event.detail = params.detail; else event.initEvent(type, false, false); } node.dispatchEvent(event); } function dispatchConstant(type, params) { return function() { return dispatchEvent(this, type, params); }; } function dispatchFunction(type, params) { return function() { return dispatchEvent(this, type, params.apply(this, arguments)); }; } function selection_dispatch(type, params) { return this.each((typeof params === "function" ? dispatchFunction : dispatchConstant)(type, params)); } function* selection_iterator() { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) { if (node = group[i]) yield node; } } } var root$1 = [null]; function Selection$1(groups, parents) { this._groups = groups; this._parents = parents; } function selection() { return new Selection$1([[document.documentElement]], root$1); } function selection_selection() { return this; } Selection$1.prototype = selection.prototype = { constructor: Selection$1, select: selection_select, selectAll: selection_selectAll, selectChild: selection_selectChild, selectChildren: selection_selectChildren, filter: selection_filter, data: selection_data, enter: selection_enter, exit: selection_exit, join: selection_join, merge: selection_merge, selection: selection_selection, order: selection_order, sort: selection_sort, call: selection_call, nodes: selection_nodes, node: selection_node, size: selection_size, empty: selection_empty, each: selection_each, attr: selection_attr, style: selection_style, property: selection_property, classed: selection_classed, text: selection_text, html: selection_html, raise: selection_raise, lower: selection_lower, append: selection_append, insert: selection_insert, remove: selection_remove, clone: selection_clone, datum: selection_datum, on: selection_on, dispatch: selection_dispatch, [Symbol.iterator]: selection_iterator }; function d3Select(selector) { return typeof selector === "string" ? new Selection$1([[document.querySelector(selector)]], [document.documentElement]) : new Selection$1([[selector]], root$1); } function sourceEvent(event) { let sourceEvent; while (sourceEvent = event.sourceEvent) event = sourceEvent; return event; } function pointer(event, node) { event = sourceEvent(event); if (node === undefined) node = event.currentTarget; if (node) { var svg = node.ownerSVGElement || node; if (svg.createSVGPoint) { var point = svg.createSVGPoint(); point.x = event.clientX, point.y = event.clientY; point = point.matrixTransform(node.getScreenCTM().inverse()); return [point.x, point.y]; } if (node.getBoundingClientRect) { var rect = node.getBoundingClientRect(); return [event.clientX - rect.left - node.clientLeft, event.clientY - rect.top - node.clientTop]; } } return [event.pageX, event.pageY]; } var noop = {value: () => {}}; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames(typenames, types) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return {type: t, name: name}; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function(typename, callback) { var _ = this._, T = parseTypenames(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get$1(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set$1(_[t], typename.name, callback); else if (callback == null) for (t in _) _[t] = set$1(_[t], typename.name, null); } return this; }, copy: function() { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function(type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function(type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get$1(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set$1(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({name: name, value: callback}); return type; } // These are typically used in conjunction with noevent to ensure that we can // preventDefault on the event. const nonpassive = {passive: false}; const nonpassivecapture = {capture: true, passive: false}; function nopropagation$1(event) { event.stopImmediatePropagation(); } function noevent$1(event) { event.preventDefault(); event.stopImmediatePropagation(); } function dragDisable(view) { var root = view.document.documentElement, selection = d3Select(view).on("dragstart.drag", noevent$1, nonpassivecapture); if ("onselectstart" in root) { selection.on("selectstart.drag", noevent$1, nonpassivecapture); } else { root.__noselect = root.style.MozUserSelect; root.style.MozUserSelect = "none"; } } function yesdrag(view, noclick) { var root = view.document.documentElement, selection = d3Select(view).on("dragstart.drag", null); if (noclick) { selection.on("click.drag", noevent$1, nonpassivecapture); setTimeout(function() { selection.on("click.drag", null); }, 0); } if ("onselectstart" in root) { selection.on("selectstart.drag", null); } else { root.style.MozUserSelect = root.__noselect; delete root.__noselect; } } var constant$3 = x => () => x; function DragEvent(type, { sourceEvent, subject, target, identifier, active, x, y, dx, dy, dispatch }) { Object.defineProperties(this, { type: {value: type, enumerable: true, configurable: true}, sourceEvent: {value: sourceEvent, enumerable: true, configurable: true}, subject: {value: subject, enumerable: true, configurable: true}, target: {value: target, enumerable: true, configurable: true}, identifier: {value: identifier, enumerable: true, configurable: true}, active: {value: active, enumerable: true, configurable: true}, x: {value: x, enumerable: true, configurable: true}, y: {value: y, enumerable: true, configurable: true}, dx: {value: dx, enumerable: true, configurable: true}, dy: {value: dy, enumerable: true, configurable: true}, _: {value: dispatch} }); } DragEvent.prototype.on = function() { var value = this._.on.apply(this._, arguments); return value === this._ ? this : value; }; // Ignore right-click, since that should open the context menu. function defaultFilter$1(event) { return !event.ctrlKey && !event.button; } function defaultContainer() { return this.parentNode; } function defaultSubject(event, d) { return d == null ? {x: event.x, y: event.y} : d; } function defaultTouchable$1() { return navigator.maxTouchPoints || ("ontouchstart" in this); } function d3Drag() { var filter = defaultFilter$1, container = defaultContainer, subject = defaultSubject, touchable = defaultTouchable$1, gestures = {}, listeners = dispatch("start", "drag", "end"), active = 0, mousedownx, mousedowny, mousemoving, touchending, clickDistance2 = 0; function drag(selection) { selection .on("mousedown.drag", mousedowned) .filter(touchable) .on("touchstart.drag", touchstarted) .on("touchmove.drag", touchmoved, nonpassive) .on("touchend.drag touchcancel.drag", touchended) .style("touch-action", "none") .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)"); } function mousedowned(event, d) { if (touchending || !filter.call(this, event, d)) return; var gesture = beforestart(this, container.call(this, event, d), event, d, "mouse"); if (!gesture) return; d3Select(event.view) .on("mousemove.drag", mousemoved, nonpassivecapture) .on("mouseup.drag", mouseupped, nonpassivecapture); dragDisable(event.view); nopropagation$1(event); mousemoving = false; mousedownx = event.clientX; mousedowny = event.clientY; gesture("start", event); } function mousemoved(event) { noevent$1(event); if (!mousemoving) { var dx = event.clientX - mousedownx, dy = event.clientY - mousedowny; mousemoving = dx * dx + dy * dy > clickDistance2; } gestures.mouse("drag", event); } function mouseupped(event) { d3Select(event.view).on("mousemove.drag mouseup.drag", null); yesdrag(event.view, mousemoving); noevent$1(event); gestures.mouse("end", event); } function touchstarted(event, d) { if (!filter.call(this, event, d)) return; var touches = event.changedTouches, c = container.call(this, event, d), n = touches.length, i, gesture; for (i = 0; i < n; ++i) { if (gesture = beforestart(this, c, event, d, touches[i].identifier, touches[i])) { nopropagation$1(event); gesture("start", event, touches[i]); } } } function touchmoved(event) { var touches = event.changedTouches, n = touches.length, i, gesture; for (i = 0; i < n; ++i) { if (gesture = gestures[touches[i].identifier]) { noevent$1(event); gesture("drag", event, touches[i]); } } } function touchended(event) { var touches = event.changedTouches, n = touches.length, i, gesture; if (touchending) clearTimeout(touchending); touchending = setTimeout(function() { touchending = null; }, 500); // Ghost clicks are delayed! for (i = 0; i < n; ++i) { if (gesture = gestures[touches[i].identifier]) { nopropagation$1(event); gesture("end", event, touches[i]); } } } function beforestart(that, container, event, d, identifier, touch) { var dispatch = listeners.copy(), p = pointer(touch || event, container), dx, dy, s; if ((s = subject.call(that, new DragEvent("beforestart", { sourceEvent: event, target: drag, identifier, active, x: p[0], y: p[1], dx: 0, dy: 0, dispatch }), d)) == null) return; dx = s.x - p[0] || 0; dy = s.y - p[1] || 0; return function gesture(type, event, touch) { var p0 = p, n; switch (type) { case "start": gestures[identifier] = gesture, n = active++; break; case "end": delete gestures[identifier], --active; // falls through case "drag": p = pointer(touch || event, container), n = active; break; } dispatch.call( type, that, new DragEvent(type, { sourceEvent: event, subject: s, target: drag, identifier, active: n, x: p[0] + dx, y: p[1] + dy, dx: p[0] - p0[0], dy: p[1] - p0[1], dispatch }), d ); }; } drag.filter = function(_) { return arguments.length ? (filter = typeof _ === "function" ? _ : constant$3(!!_), drag) : filter; }; drag.container = function(_) { return arguments.length ? (container = typeof _ === "function" ? _ : constant$3(_), drag) : container; }; drag.subject = function(_) { return arguments.length ? (subject = typeof _ === "function" ? _ : constant$3(_), drag) : subject; }; drag.touchable = function(_) { return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$3(!!_), drag) : touchable; }; drag.on = function() { var value = listeners.on.apply(listeners, arguments); return value === listeners ? drag : value; }; drag.clickDistance = function(_) { return arguments.length ? (clickDistance2 = (_ = +_) * _, drag) : Math.sqrt(clickDistance2); }; return drag; } function define(constructor, factory, prototype) { constructor.prototype = factory.prototype = prototype; prototype.constructor = constructor; } function extend(parent, definition) { var prototype = Object.create(parent.prototype); for (var key in definition) prototype[key] = definition[key]; return prototype; } function Color() {} var darker = 0.7; var brighter = 1 / darker; var reI = "\\s*([+-]?\\d+)\\s*", reN = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)\\s*", reP = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)%\\s*", reHex = /^#([0-9a-f]{3,8})$/, reRgbInteger = new RegExp(`^rgb\\(${reI},${reI},${reI}\\)$`), reRgbPercent = new RegExp(`^rgb\\(${reP},${reP},${reP}\\)$`), reRgbaInteger = new RegExp(`^rgba\\(${reI},${reI},${reI},${reN}\\)$`), reRgbaPercent = new RegExp(`^rgba\\(${reP},${reP},${reP},${reN}\\)$`), reHslPercent = new RegExp(`^hsl\\(${reN},${reP},${reP}\\)$`), reHslaPercent = new RegExp(`^hsla\\(${reN},${reP},${reP},${reN}\\)$`); var named = { aliceblue: 0xf0f8ff, antiquewhite: 0xfaebd7, aqua: 0x00ffff, aquamarine: 0x7fffd4, azure: 0xf0ffff, beige: 0xf5f5dc, bisque: 0xffe4c4, black: 0x000000, blanchedalmond: 0xffebcd, blue: 0x0000ff, blueviolet: 0x8a2be2, brown: 0xa52a2a, burlywood: 0xdeb887, cadetblue: 0x5f9ea0, chartreuse: 0x7fff00, chocolate: 0xd2691e, coral: 0xff7f50, cornflowerblue: 0x6495ed, cornsilk: 0xfff8dc, crimson: 0xdc143c, cyan: 0x00ffff, darkblue: 0x00008b, darkcyan: 0x008b8b, darkgoldenrod: 0xb8860b, darkgray: 0xa9a9a9, darkgreen: 0x006400, darkgrey: 0xa9a9a9, darkkhaki: 0xbdb76b, darkmagenta: 0x8b008b, darkolivegreen: 0x556b2f, darkorange: 0xff8c00, darkorchid: 0x9932cc, darkred: 0x8b0000, darksalmon: 0xe9967a, darkseagreen: 0x8fbc8f, darkslateblue: 0x483d8b, darkslategray: 0x2f4f4f, darkslategrey: 0x2f4f4f, darkturquoise: 0x00ced1, darkviolet: 0x9400d3, deeppink: 0xff1493, deepskyblue: 0x00bfff, dimgray: 0x696969, dimgrey: 0x696969, dodgerblue: 0x1e90ff, firebrick: 0xb22222, floralwhite: 0xfffaf0, forestgreen: 0x228b22, fuchsia: 0xff00ff, gainsboro: 0xdcdcdc, ghostwhite: 0xf8f8ff, gold: 0xffd700, goldenrod: 0xdaa520, gray: 0x808080, green: 0x008000, greenyellow: 0xadff2f, grey: 0x808080, honeydew: 0xf0fff0, hotpink: 0xff69b4, indianred: 0xcd5c5c, indigo: 0x4b0082, ivory: 0xfffff0, khaki: 0xf0e68c, lavender: 0xe6e6fa, lavenderblush: 0xfff0f5, lawngreen: 0x7cfc00, lemonchiffon: 0xfffacd, lightblue: 0xadd8e6, lightcoral: 0xf08080, lightcyan: 0xe0ffff, lightgoldenrodyellow: 0xfafad2, lightgray: 0xd3d3d3, lightgreen: 0x90ee90, lightgrey: 0xd3d3d3, lightpink: 0xffb6c1, lightsalmon: 0xffa07a, lightseagreen: 0x20b2aa, lightskyblue: 0x87cefa, lightslategray: 0x778899, lightslategrey: 0x778899, lightsteelblue: 0xb0c4de, lightyellow: 0xffffe0, lime: 0x00ff00, limegreen: 0x32cd32, linen: 0xfaf0e6, magenta: 0xff00ff, maroon: 0x800000, mediumaquamarine: 0x66cdaa, mediumblue: 0x0000cd, mediumorchid: 0xba55d3, mediumpurple: 0x9370db, mediumseagreen: 0x3cb371, mediumslateblue: 0x7b68ee, mediumspringgreen: 0x00fa9a, mediumturquoise: 0x48d1cc, mediumvioletred: 0xc71585, midnightblue: 0x191970, mintcream: 0xf5fffa, mistyrose: 0xffe4e1, moccasin: 0xffe4b5, navajowhite: 0xffdead, navy: 0x000080, oldlace: 0xfdf5e6, olive: 0x808000, olivedrab: 0x6b8e23, orange: 0xffa500, orangered: 0xff4500, orchid: 0xda70d6, palegoldenrod: 0xeee8aa, palegreen: 0x98fb98, paleturquoise: 0xafeeee, palevioletred: 0xdb7093, papayawhip: 0xffefd5, peachpuff: 0xffdab9, peru: 0xcd853f, pink: 0xffc0cb, plum: 0xdda0dd, powderblue: 0xb0e0e6, purple: 0x800080, rebeccapurple: 0x663399, red: 0xff0000, rosybrown: 0xbc8f8f, royalblue: 0x4169e1, saddlebrown: 0x8b4513, salmon: 0xfa8072, sandybrown: 0xf4a460, seagreen: 0x2e8b57, seashell: 0xfff5ee, sienna: 0xa0522d, silver: 0xc0c0c0, skyblue: 0x87ceeb, slateblue: 0x6a5acd, slategray: 0x708090, slategrey: 0x708090, snow: 0xfffafa, springgreen: 0x00ff7f, steelblue: 0x4682b4, tan: 0xd2b48c, teal: 0x008080, thistle: 0xd8bfd8, tomato: 0xff6347, turquoise: 0x40e0d0, violet: 0xee82ee, wheat: 0xf5deb3, white: 0xffffff, whitesmoke: 0xf5f5f5, yellow: 0xffff00, yellowgreen: 0x9acd32 }; define(Color, color, { copy(channels) { return Object.assign(new this.constructor, this, channels); }, displayable() { return this.rgb().displayable(); }, hex: color_formatHex, // Deprecated! Use color.formatHex. formatHex: color_formatHex, formatHex8: color_formatHex8, formatHsl: color_formatHsl, formatRgb: color_formatRgb, toString: color_formatRgb }); function color_formatHex() { return this.rgb().formatHex(); } function color_formatHex8() { return this.rgb().formatHex8(); } function color_formatHsl() { return hslConvert(this).formatHsl(); } function color_formatRgb() { return this.rgb().formatRgb(); } function color(format) { var m, l; format = (format + "").trim().toLowerCase(); return (m = reHex.exec(format)) ? (l = m[1].length, m = parseInt(m[1], 16), l === 6 ? rgbn(m) // #ff0000 : l === 3 ? new Rgb((m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), ((m & 0xf) << 4) | (m & 0xf), 1) // #f00 : l === 8 ? rgba(m >> 24 & 0xff, m >> 16 & 0xff, m >> 8 & 0xff, (m & 0xff) / 0xff) // #ff000000 : l === 4 ? rgba((m >> 12 & 0xf) | (m >> 8 & 0xf0), (m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), (((m & 0xf) << 4) | (m & 0xf)) / 0xff) // #f000 : null) // invalid hex : (m = reRgbInteger.exec(format)) ? new Rgb(m[1], m[2], m[3], 1) // rgb(255, 0, 0) : (m = reRgbPercent.exec(format)) ? new Rgb(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, 1) // rgb(100%, 0%, 0%) : (m = reRgbaInteger.exec(format)) ? rgba(m[1], m[2], m[3], m[4]) // rgba(255, 0, 0, 1) : (m = reRgbaPercent.exec(format)) ? rgba(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, m[4]) // rgb(100%, 0%, 0%, 1) : (m = reHslPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, 1) // hsl(120, 50%, 50%) : (m = reHslaPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, m[4]) // hsla(120, 50%, 50%, 1) : named.hasOwnProperty(format) ? rgbn(named[format]) // eslint-disable-line no-prototype-builtins : format === "transparent" ? new Rgb(NaN, NaN, NaN, 0) : null; } function rgbn(n) { return new Rgb(n >> 16 & 0xff, n >> 8 & 0xff, n & 0xff, 1); } function rgba(r, g, b, a) { if (a <= 0) r = g = b = NaN; return new Rgb(r, g, b, a); } function rgbConvert(o) { if (!(o instanceof Color)) o = color(o); if (!o) return new Rgb; o = o.rgb(); return new Rgb(o.r, o.g, o.b, o.opacity); } function rgb(r, g, b, opacity) { return arguments.length === 1 ? rgbConvert(r) : new Rgb(r, g, b, opacity == null ? 1 : opacity); } function Rgb(r, g, b, opacity) { this.r = +r; this.g = +g; this.b = +b; this.opacity = +opacity; } define(Rgb, rgb, extend(Color, { brighter(k) { k = k == null ? brighter : Math.pow(brighter, k); return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity); }, darker(k) { k = k == null ? darker : Math.pow(darker, k); return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity); }, rgb() { return this; }, clamp() { return new Rgb(clampi(this.r), clampi(this.g), clampi(this.b), clampa(this.opacity)); }, displayable() { return (-0.5 <= this.r && this.r < 255.5) && (-0.5 <= this.g && this.g < 255.5) && (-0.5 <= this.b && this.b < 255.5) && (0 <= this.opacity && this.opacity <= 1); }, hex: rgb_formatHex, // Deprecated! Use color.formatHex. formatHex: rgb_formatHex, formatHex8: rgb_formatHex8, formatRgb: rgb_formatRgb, toString: rgb_formatRgb })); function rgb_formatHex() { return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}`; } function rgb_formatHex8() { return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}${hex((isNaN(this.opacity) ? 1 : this.opacity) * 255)}`; } function rgb_formatRgb() { const a = clampa(this.opacity); return `${a === 1 ? "rgb(" : "rgba("}${clampi(this.r)}, ${clampi(this.g)}, ${clampi(this.b)}${a === 1 ? ")" : `, ${a})`}`; } function clampa(opacity) { return isNaN(opacity) ? 1 : Math.max(0, Math.min(1, opacity)); } function clampi(value) { return Math.max(0, Math.min(255, Math.round(value) || 0)); } function hex(value) { value = clampi(value); return (value < 16 ? "0" : "") + value.toString(16); } function hsla(h, s, l, a) { if (a <= 0) h = s = l = NaN; else if (l <= 0 || l >= 1) h = s = NaN; else if (s <= 0) h = NaN; return new Hsl(h, s, l, a); } function hslConvert(o) { if (o instanceof Hsl) return new Hsl(o.h, o.s, o.l, o.opacity); if (!(o instanceof Color)) o = color(o); if (!o) return new Hsl; if (o instanceof Hsl) return o; o = o.rgb(); var r = o.r / 255, g = o.g / 255, b = o.b / 255, min = Math.min(r, g, b), max = Math.max(r, g, b), h = NaN, s = max - min, l = (max + min) / 2; if (s) { if (r === max) h = (g - b) / s + (g < b) * 6; else if (g === max) h = (b - r) / s + 2; else h = (r - g) / s + 4; s /= l < 0.5 ? max + min : 2 - max - min; h *= 60; } else { s = l > 0 && l < 1 ? 0 : h; } return new Hsl(h, s, l, o.opacity); } function hsl(h, s, l, opacity) { return arguments.length === 1 ? hslConvert(h) : new Hsl(h, s, l, opacity == null ? 1 : opacity); } function Hsl(h, s, l, opacity) { this.h = +h; this.s = +s; this.l = +l; this.opacity = +opacity; } define(Hsl, hsl, extend(Color, { brighter(k) { k = k == null ? brighter : Math.pow(brighter, k); return new Hsl(this.h, this.s, this.l * k, this.opacity); }, darker(k) { k = k == null ? darker : Math.pow(darker, k); return new Hsl(this.h, this.s, this.l * k, this.opacity); }, rgb() { var h = this.h % 360 + (this.h < 0) * 360, s = isNaN(h) || isNaN(this.s) ? 0 : this.s, l = this.l, m2 = l + (l < 0.5 ? l : 1 - l) * s, m1 = 2 * l - m2; return new Rgb( hsl2rgb(h >= 240 ? h - 240 : h + 120, m1, m2), hsl2rgb(h, m1, m2), hsl2rgb(h < 120 ? h + 240 : h - 120, m1, m2), this.opacity ); }, clamp() { return new Hsl(clamph(this.h), clampt(this.s), clampt(this.l), clampa(this.opacity)); }, displayable() { return (0 <= this.s && this.s <= 1 || isNaN(this.s)) && (0 <= this.l && this.l <= 1) && (0 <= this.opacity && this.opacity <= 1); }, formatHsl() { const a = clampa(this.opacity); return `${a === 1 ? "hsl(" : "hsla("}${clamph(this.h)}, ${clampt(this.s) * 100}%, ${clampt(this.l) * 100}%${a === 1 ? ")" : `, ${a})`}`; } })); function clamph(value) { value = (value || 0) % 360; return value < 0 ? value + 360 : value; } function clampt(value) { return Math.max(0, Math.min(1, value || 0)); } /* From FvD 13.37, CSS Color Module Level 3 */ function hsl2rgb(h, m1, m2) { return (h < 60 ? m1 + (m2 - m1) * h / 60 : h < 180 ? m2 : h < 240 ? m1 + (m2 - m1) * (240 - h) / 60 : m1) * 255; } var constant$2 = x => () => x; function linear(a, d) { return function(t) { return a + t * d; }; } function exponential(a, b, y) { return a = Math.pow(a, y), b = Math.pow(b, y) - a, y = 1 / y, function(t) { return Math.pow(a + t * b, y); }; } function gamma(y) { return (y = +y) === 1 ? nogamma : function(a, b) { return b - a ? exponential(a, b, y) : constant$2(isNaN(a) ? b : a); }; } function nogamma(a, b) { var d = b - a; return d ? linear(a, d) : constant$2(isNaN(a) ? b : a); } var interpolateRgb = (function rgbGamma(y) { var color = gamma(y); function rgb$1(start, end) { var r = color((start = rgb(start)).r, (end = rgb(end)).r), g = color(start.g, end.g), b = color(start.b, end.b), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.r = r(t); start.g = g(t); start.b = b(t); start.opacity = opacity(t); return start + ""; }; } rgb$1.gamma = rgbGamma; return rgb$1; })(1); function interpolateNumber(a, b) { return a = +a, b = +b, function(t) { return a * (1 - t) + b * t; }; } var reA = /[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g, reB = new RegExp(reA.source, "g"); function zero(b) { return function() { return b; }; } function one(b) { return function(t) { return b(t) + ""; }; } function interpolateString(a, b) { var bi = reA.lastIndex = reB.lastIndex = 0, // scan index for next number in b am, // current match in a bm, // current match in b bs, // string preceding current number in b, if any i = -1, // index in s s = [], // string constants and placeholders q = []; // number interpolators // Coerce inputs to strings. a = a + "", b = b + ""; // Interpolate pairs of numbers in a & b. while ((am = reA.exec(a)) && (bm = reB.exec(b))) { if ((bs = bm.index) > bi) { // a string precedes the next number in b bs = b.slice(bi, bs); if (s[i]) s[i] += bs; // coalesce with previous string else s[++i] = bs; } if ((am = am[0]) === (bm = bm[0])) { // numbers in a & b match if (s[i]) s[i] += bm; // coalesce with previous string else s[++i] = bm; } else { // interpolate non-matching numbers s[++i] = null; q.push({i: i, x: interpolateNumber(am, bm)}); } bi = reB.lastIndex; } // Add remains of b. if (bi < b.length) { bs = b.slice(bi); if (s[i]) s[i] += bs; // coalesce with previous string else s[++i] = bs; } // Special optimization for only a single match. // Otherwise, interpolate each of the numbers and rejoin the string. return s.length < 2 ? (q[0] ? one(q[0].x) : zero(b)) : (b = q.length, function(t) { for (var i = 0, o; i < b; ++i) s[(o = q[i]).i] = o.x(t); return s.join(""); }); } var degrees = 180 / Math.PI; var identity$1 = { translateX: 0, translateY: 0, rotate: 0, skewX: 0, scaleX: 1, scaleY: 1 }; function decompose(a, b, c, d, e, f) { var scaleX, scaleY, skewX; if (scaleX = Math.sqrt(a * a + b * b)) a /= scaleX, b /= scaleX; if (skewX = a * c + b * d) c -= a * skewX, d -= b * skewX; if (scaleY = Math.sqrt(c * c + d * d)) c /= scaleY, d /= scaleY, skewX /= scaleY; if (a * d < b * c) a = -a, b = -b, skewX = -skewX, scaleX = -scaleX; return { translateX: e, translateY: f, rotate: Math.atan2(b, a) * degrees, skewX: Math.atan(skewX) * degrees, scaleX: scaleX, scaleY: scaleY }; } var svgNode; /* eslint-disable no-undef */ function parseCss(value) { const m = new (typeof DOMMatrix === "function" ? DOMMatrix : WebKitCSSMatrix)(value + ""); return m.isIdentity ? identity$1 : decompose(m.a, m.b, m.c, m.d, m.e, m.f); } function parseSvg(value) { if (value == null) return identity$1; if (!svgNode) svgNode = document.createElementNS("http://www.w3.org/2000/svg", "g"); svgNode.setAttribute("transform", value); if (!(value = svgNode.transform.baseVal.consolidate())) return identity$1; value = value.matrix; return decompose(value.a, value.b, value.c, value.d, value.e, value.f); } function interpolateTransform(parse, pxComma, pxParen, degParen) { function pop(s) { return s.length ? s.pop() + " " : ""; } function translate(xa, ya, xb, yb, s, q) { if (xa !== xb || ya !== yb) { var i = s.push("translate(", null, pxComma, null, pxParen); q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)}); } else if (xb || yb) { s.push("translate(" + xb + pxComma + yb + pxParen); } } function rotate(a, b, s, q) { if (a !== b) { if (a - b > 180) b += 360; else if (b - a > 180) a += 360; // shortest path q.push({i: s.push(pop(s) + "rotate(", null, degParen) - 2, x: interpolateNumber(a, b)}); } else if (b) { s.push(pop(s) + "rotate(" + b + degParen); } } function skewX(a, b, s, q) { if (a !== b) { q.push({i: s.push(pop(s) + "skewX(", null, degParen) - 2, x: interpolateNumber(a, b)}); } else if (b) { s.push(pop(s) + "skewX(" + b + degParen); } } function scale(xa, ya, xb, yb, s, q) { if (xa !== xb || ya !== yb) { var i = s.push(pop(s) + "scale(", null, ",", null, ")"); q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)}); } else if (xb !== 1 || yb !== 1) { s.push(pop(s) + "scale(" + xb + "," + yb + ")"); } } return function(a, b) { var s = [], // string constants and placeholders q = []; // number interpolators a = parse(a), b = parse(b); translate(a.translateX, a.translateY, b.translateX, b.translateY, s, q); rotate(a.rotate, b.rotate, s, q); skewX(a.skewX, b.skewX, s, q); scale(a.scaleX, a.scaleY, b.scaleX, b.scaleY, s, q); a = b = null; // gc return function(t) { var i = -1, n = q.length, o; while (++i < n) s[(o = q[i]).i] = o.x(t); return s.join(""); }; }; } var interpolateTransformCss = interpolateTransform(parseCss, "px, ", "px)", "deg)"); var interpolateTransformSvg = interpolateTransform(parseSvg, ", ", ")", ")"); var epsilon2 = 1e-12; function cosh(x) { return ((x = Math.exp(x)) + 1 / x) / 2; } function sinh(x) { return ((x = Math.exp(x)) - 1 / x) / 2; } function tanh(x) { return ((x = Math.exp(2 * x)) - 1) / (x + 1); } var interpolateZoom = (function zoomRho(rho, rho2, rho4) { // p0 = [ux0, uy0, w0] // p1 = [ux1, uy1, w1] function zoom(p0, p1) { var ux0 = p0[0], uy0 = p0[1], w0 = p0[2], ux1 = p1[0], uy1 = p1[1], w1 = p1[2], dx = ux1 - ux0, dy = uy1 - uy0, d2 = dx * dx + dy * dy, i, S; // Special case for u0 ≅ u1. if (d2 < epsilon2) { S = Math.log(w1 / w0) / rho; i = function(t) { return [ ux0 + t * dx, uy0 + t * dy, w0 * Math.exp(rho * t * S) ]; }; } // General case. else { var d1 = Math.sqrt(d2), b0 = (w1 * w1 - w0 * w0 + rho4 * d2) / (2 * w0 * rho2 * d1), b1 = (w1 * w1 - w0 * w0 - rho4 * d2) / (2 * w1 * rho2 * d1), r0 = Math.log(Math.sqrt(b0 * b0 + 1) - b0), r1 = Math.log(Math.sqrt(b1 * b1 + 1) - b1); S = (r1 - r0) / rho; i = function(t) { var s = t * S, coshr0 = cosh(r0), u = w0 / (rho2 * d1) * (coshr0 * tanh(rho * s + r0) - sinh(r0)); return [ ux0 + u * dx, uy0 + u * dy, w0 * coshr0 / cosh(rho * s + r0) ]; }; } i.duration = S * 1000 * rho / Math.SQRT2; return i; } zoom.rho = function(_) { var _1 = Math.max(1e-3, +_), _2 = _1 * _1, _4 = _2 * _2; return zoomRho(_1, _2, _4); }; return zoom; })(Math.SQRT2, 2, 4); var frame = 0, // is an animation frame pending? timeout$1 = 0, // is a timeout pending? interval = 0, // are any timers active? pokeDelay = 1000, // how frequently we check for clock skew taskHead, taskTail, clockLast = 0, clockNow = 0, clockSkew = 0, clock = typeof performance === "object" && performance.now ? performance : Date, setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); }; function now$2() { return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew); } function clearNow() { clockNow = 0; } function Timer() { this._call = this._time = this._next = null; } Timer.prototype = timer.prototype = { constructor: Timer, restart: function(callback, delay, time) { if (typeof callback !== "function") throw new TypeError("callback is not a function"); time = (time == null ? now$2() : +time) + (delay == null ? 0 : +delay); if (!this._next && taskTail !== this) { if (taskTail) taskTail._next = this; else taskHead = this; taskTail = this; } this._call = callback; this._time = time; sleep(); }, stop: function() { if (this._call) { this._call = null; this._time = Infinity; sleep(); } } }; function timer(callback, delay, time) { var t = new Timer; t.restart(callback, delay, time); return t; } function timerFlush() { now$2(); // Get the current time, if not already set. ++frame; // Pretend we’ve set an alarm, if we haven’t already. var t = taskHead, e; while (t) { if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e); t = t._next; } --frame; } function wake() { clockNow = (clockLast = clock.now()) + clockSkew; frame = timeout$1 = 0; try { timerFlush(); } finally { frame = 0; nap(); clockNow = 0; } } function poke() { var now = clock.now(), delay = now - clockLast; if (delay > pokeDelay) clockSkew -= delay, clockLast = now; } function nap() { var t0, t1 = taskHead, t2, time = Infinity; while (t1) { if (t1._call) { if (time > t1._time) time = t1._time; t0 = t1, t1 = t1._next; } else { t2 = t1._next, t1._next = null; t1 = t0 ? t0._next = t2 : taskHead = t2; } } taskTail = t0; sleep(time); } function sleep(time) { if (frame) return; // Soonest alarm already set, or will be. if (timeout$1) timeout$1 = clearTimeout(timeout$1); var delay = time - clockNow; // Strictly less than if we recomputed clockNow. if (delay > 24) { if (time < Infinity) timeout$1 = setTimeout(wake, time - clock.now() - clockSkew); if (interval) interval = clearInterval(interval); } else { if (!interval) clockLast = clock.now(), interval = setInterval(poke, pokeDelay); frame = 1, setFrame(wake); } } function timeout(callback, delay, time) { var t = new Timer; delay = delay == null ? 0 : +delay; t.restart(elapsed => { t.stop(); callback(elapsed + delay); }, delay, time); return t; } var emptyOn = dispatch("start", "end", "cancel", "interrupt"); var emptyTween = []; var CREATED = 0; var SCHEDULED = 1; var STARTING = 2; var STARTED = 3; var RUNNING = 4; var ENDING = 5; var ENDED = 6; function schedule(node, name, id, index, group, timing) { var schedules = node.__transition; if (!schedules) node.__transition = {}; else if (id in schedules) return; create(node, id, { name: name, index: index, // For context during callback. group: group, // For context during callback. on: emptyOn, tween: emptyTween, time: timing.time, delay: timing.delay, duration: timing.duration, ease: timing.ease, timer: null, state: CREATED }); } function init(node, id) { var schedule = get(node, id); if (schedule.state > CREATED) throw new Error("too late; already scheduled"); return schedule; } function set(node, id) { var schedule = get(node, id); if (schedule.state > STARTED) throw new Error("too late; already running"); return schedule; } function get(node, id) { var schedule = node.__transition; if (!schedule || !(schedule = schedule[id])) throw new Error("transition not found"); return schedule; } function create(node, id, self) { var schedules = node.__transition, tween; // Initialize the self timer when the transition is created. // Note the actual delay is not known until the first callback! schedules[id] = self; self.timer = timer(schedule, 0, self.time); function schedule(elapsed) { self.state = SCHEDULED; self.timer.restart(start, self.delay, self.time); // If the elapsed delay is less than our first sleep, start immediately. if (self.delay <= elapsed) start(elapsed - self.delay); } function start(elapsed) { var i, j, n, o; // If the state is not SCHEDULED, then we previously errored on start. if (self.state !== SCHEDULED) return stop(); for (i in schedules) { o = schedules[i]; if (o.name !== self.name) continue; // While this element already has a starting transition during this frame, // defer starting an interrupting transition until that transition has a // chance to tick (and possibly end); see d3/d3-transition#54! if (o.state === STARTED) return timeout(start); // Interrupt the active transition, if any. if (o.state === RUNNING) { o.state = ENDED; o.timer.stop(); o.on.call("interrupt", node, node.__data__, o.index, o.group); delete schedules[i]; } // Cancel any pre-empted transitions. else if (+i < id) { o.state = ENDED; o.timer.stop(); o.on.call("cancel", node, node.__data__, o.index, o.group); delete schedules[i]; } } // Defer the first tick to end of the current frame; see d3/d3#1576. // Note the transition may be canceled after start and before the first tick! // Note this must be scheduled before the start event; see d3/d3-transition#16! // Assuming this is successful, subsequent callbacks go straight to tick. timeout(function() { if (self.state === STARTED) { self.state = RUNNING; self.timer.restart(tick, self.delay, self.time); tick(elapsed); } }); // Dispatch the start event. // Note this must be done before the tween are initialized. self.state = STARTING; self.on.call("start", node, node.__data__, self.index, self.group); if (self.state !== STARTING) return; // interrupted self.state = STARTED; // Initialize the tween, deleting null tween. tween = new Array(n = self.tween.length); for (i = 0, j = -1; i < n; ++i) { if (o = self.tween[i].value.call(node, node.__data__, self.index, self.group)) { tween[++j] = o; } } tween.length = j + 1; } function tick(elapsed) { var t = elapsed < self.duration ? self.ease.call(null, elapsed / self.duration) : (self.timer.restart(stop), self.state = ENDING, 1), i = -1, n = tween.length; while (++i < n) { tween[i].call(node, t); } // Dispatch the end event. if (self.state === ENDING) { self.on.call("end", node, node.__data__, self.index, self.group); stop(); } } function stop() { self.state = ENDED; self.timer.stop(); delete schedules[id]; for (var i in schedules) return; // eslint-disable-line no-unused-vars delete node.__transition; } } function interrupt(node, name) { var schedules = node.__transition, schedule, active, empty = true, i; if (!schedules) return; name = name == null ? null : name + ""; for (i in schedules) { if ((schedule = schedules[i]).name !== name) { empty = false; continue; } active = schedule.state > STARTING && schedule.state < ENDING; schedule.state = ENDED; schedule.timer.stop(); schedule.on.call(active ? "interrupt" : "cancel", node, node.__data__, schedule.index, schedule.group); delete schedules[i]; } if (empty) delete node.__transition; } function selection_interrupt(name) { return this.each(function() { interrupt(this, name); }); } function tweenRemove(id, name) { var tween0, tween1; return function() { var schedule = set(this, id), tween = schedule.tween; // If this node shared tween with the previous node, // just assign the updated shared tween and we’re done! // Otherwise, copy-on-write. if (tween !== tween0) { tween1 = tween0 = tween; for (var i = 0, n = tween1.length; i < n; ++i) { if (tween1[i].name === name) { tween1 = tween1.slice(); tween1.splice(i, 1); break; } } } schedule.tween = tween1; }; } function tweenFunction(id, name, value) { var tween0, tween1; if (typeof value !== "function") throw new Error; return function() { var schedule = set(this, id), tween = schedule.tween; // If this node shared tween with the previous node, // just assign the updated shared tween and we’re done! // Otherwise, copy-on-write. if (tween !== tween0) { tween1 = (tween0 = tween).slice(); for (var t = {name: name, value: value}, i = 0, n = tween1.length; i < n; ++i) { if (tween1[i].name === name) { tween1[i] = t; break; } } if (i === n) tween1.push(t); } schedule.tween = tween1; }; } function transition_tween(name, value) { var id = this._id; name += ""; if (arguments.length < 2) { var tween = get(this.node(), id).tween; for (var i = 0, n = tween.length, t; i < n; ++i) { if ((t = tween[i]).name === name) { return t.value; } } return null; } return this.each((value == null ? tweenRemove : tweenFunction)(id, name, value)); } function tweenValue(transition, name, value) { var id = transition._id; transition.each(function() { var schedule = set(this, id); (schedule.value || (schedule.value = {}))[name] = value.apply(this, arguments); }); return function(node) { return get(node, id).value[name]; }; } function interpolate(a, b) { var c; return (typeof b === "number" ? interpolateNumber : b instanceof color ? interpolateRgb : (c = color(b)) ? (b = c, interpolateRgb) : interpolateString)(a, b); } function attrRemove(name) { return function() { this.removeAttribute(name); }; } function attrRemoveNS(fullname) { return function() { this.removeAttributeNS(fullname.space, fullname.local); }; } function attrConstant(name, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = this.getAttribute(name); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function attrConstantNS(fullname, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = this.getAttributeNS(fullname.space, fullname.local); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function attrFunction(name, interpolate, value) { var string00, string10, interpolate0; return function() { var string0, value1 = value(this), string1; if (value1 == null) return void this.removeAttribute(name); string0 = this.getAttribute(name); string1 = value1 + ""; return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function attrFunctionNS(fullname, interpolate, value) { var string00, string10, interpolate0; return function() { var string0, value1 = value(this), string1; if (value1 == null) return void this.removeAttributeNS(fullname.space, fullname.local); string0 = this.getAttributeNS(fullname.space, fullname.local); string1 = value1 + ""; return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function transition_attr(name, value) { var fullname = namespace(name), i = fullname === "transform" ? interpolateTransformSvg : interpolate; return this.attrTween(name, typeof value === "function" ? (fullname.local ? attrFunctionNS : attrFunction)(fullname, i, tweenValue(this, "attr." + name, value)) : value == null ? (fullname.local ? attrRemoveNS : attrRemove)(fullname) : (fullname.local ? attrConstantNS : attrConstant)(fullname, i, value)); } function attrInterpolate(name, i) { return function(t) { this.setAttribute(name, i.call(this, t)); }; } function attrInterpolateNS(fullname, i) { return function(t) { this.setAttributeNS(fullname.space, fullname.local, i.call(this, t)); }; } function attrTweenNS(fullname, value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && attrInterpolateNS(fullname, i); return t0; } tween._value = value; return tween; } function attrTween(name, value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && attrInterpolate(name, i); return t0; } tween._value = value; return tween; } function transition_attrTween(name, value) { var key = "attr." + name; if (arguments.length < 2) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; var fullname = namespace(name); return this.tween(key, (fullname.local ? attrTweenNS : attrTween)(fullname, value)); } function delayFunction(id, value) { return function() { init(this, id).delay = +value.apply(this, arguments); }; } function delayConstant(id, value) { return value = +value, function() { init(this, id).delay = value; }; } function transition_delay(value) { var id = this._id; return arguments.length ? this.each((typeof value === "function" ? delayFunction : delayConstant)(id, value)) : get(this.node(), id).delay; } function durationFunction(id, value) { return function() { set(this, id).duration = +value.apply(this, arguments); }; } function durationConstant(id, value) { return value = +value, function() { set(this, id).duration = value; }; } function transition_duration(value) { var id = this._id; return arguments.length ? this.each((typeof value === "function" ? durationFunction : durationConstant)(id, value)) : get(this.node(), id).duration; } function easeConstant(id, value) { if (typeof value !== "function") throw new Error; return function() { set(this, id).ease = value; }; } function transition_ease(value) { var id = this._id; return arguments.length ? this.each(easeConstant(id, value)) : get(this.node(), id).ease; } function easeVarying(id, value) { return function() { var v = value.apply(this, arguments); if (typeof v !== "function") throw new Error; set(this, id).ease = v; }; } function transition_easeVarying(value) { if (typeof value !== "function") throw new Error; return this.each(easeVarying(this._id, value)); } function transition_filter(match) { if (typeof match !== "function") match = matcher(match); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) { if ((node = group[i]) && match.call(node, node.__data__, i, group)) { subgroup.push(node); } } } return new Transition(subgroups, this._parents, this._name, this._id); } function transition_merge(transition) { if (transition._id !== this._id) throw new Error; for (var groups0 = this._groups, groups1 = transition._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) { for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group0[i] || group1[i]) { merge[i] = node; } } } for (; j < m0; ++j) { merges[j] = groups0[j]; } return new Transition(merges, this._parents, this._name, this._id); } function start(name) { return (name + "").trim().split(/^|\s+/).every(function(t) { var i = t.indexOf("."); if (i >= 0) t = t.slice(0, i); return !t || t === "start"; }); } function onFunction(id, name, listener) { var on0, on1, sit = start(name) ? init : set; return function() { var schedule = sit(this, id), on = schedule.on; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0) (on1 = (on0 = on).copy()).on(name, listener); schedule.on = on1; }; } function transition_on(name, listener) { var id = this._id; return arguments.length < 2 ? get(this.node(), id).on.on(name) : this.each(onFunction(id, name, listener)); } function removeFunction(id) { return function() { var parent = this.parentNode; for (var i in this.__transition) if (+i !== id) return; if (parent) parent.removeChild(this); }; } function transition_remove() { return this.on("end.remove", removeFunction(this._id)); } function transition_select(select) { var name = this._name, id = this._id; if (typeof select !== "function") select = selector(select); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) { if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) { if ("__data__" in node) subnode.__data__ = node.__data__; subgroup[i] = subnode; schedule(subgroup[i], name, id, i, subgroup, get(node, id)); } } } return new Transition(subgroups, this._parents, name, id); } function transition_selectAll(select) { var name = this._name, id = this._id; if (typeof select !== "function") select = selectorAll(select); for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { for (var children = select.call(node, node.__data__, i, group), child, inherit = get(node, id), k = 0, l = children.length; k < l; ++k) { if (child = children[k]) { schedule(child, name, id, k, children, inherit); } } subgroups.push(children); parents.push(node); } } } return new Transition(subgroups, parents, name, id); } var Selection = selection.prototype.constructor; function transition_selection() { return new Selection(this._groups, this._parents); } function styleNull(name, interpolate) { var string00, string10, interpolate0; return function() { var string0 = styleValue(this, name), string1 = (this.style.removeProperty(name), styleValue(this, name)); return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : interpolate0 = interpolate(string00 = string0, string10 = string1); }; } function styleRemove(name) { return function() { this.style.removeProperty(name); }; } function styleConstant(name, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = styleValue(this, name); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function styleFunction(name, interpolate, value) { var string00, string10, interpolate0; return function() { var string0 = styleValue(this, name), value1 = value(this), string1 = value1 + ""; if (value1 == null) string1 = value1 = (this.style.removeProperty(name), styleValue(this, name)); return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function styleMaybeRemove(id, name) { var on0, on1, listener0, key = "style." + name, event = "end." + key, remove; return function() { var schedule = set(this, id), on = schedule.on, listener = schedule.value[key] == null ? remove || (remove = styleRemove(name)) : undefined; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0 || listener0 !== listener) (on1 = (on0 = on).copy()).on(event, listener0 = listener); schedule.on = on1; }; } function transition_style(name, value, priority) { var i = (name += "") === "transform" ? interpolateTransformCss : interpolate; return value == null ? this .styleTween(name, styleNull(name, i)) .on("end.style." + name, styleRemove(name)) : typeof value === "function" ? this .styleTween(name, styleFunction(name, i, tweenValue(this, "style." + name, value))) .each(styleMaybeRemove(this._id, name)) : this .styleTween(name, styleConstant(name, i, value), priority) .on("end.style." + name, null); } function styleInterpolate(name, i, priority) { return function(t) { this.style.setProperty(name, i.call(this, t), priority); }; } function styleTween(name, value, priority) { var t, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t = (i0 = i) && styleInterpolate(name, i, priority); return t; } tween._value = value; return tween; } function transition_styleTween(name, value, priority) { var key = "style." + (name += ""); if (arguments.length < 2) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; return this.tween(key, styleTween(name, value, priority == null ? "" : priority)); } function textConstant(value) { return function() { this.textContent = value; }; } function textFunction(value) { return function() { var value1 = value(this); this.textContent = value1 == null ? "" : value1; }; } function transition_text(value) { return this.tween("text", typeof value === "function" ? textFunction(tweenValue(this, "text", value)) : textConstant(value == null ? "" : value + "")); } function textInterpolate(i) { return function(t) { this.textContent = i.call(this, t); }; } function textTween(value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && textInterpolate(i); return t0; } tween._value = value; return tween; } function transition_textTween(value) { var key = "text"; if (arguments.length < 1) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; return this.tween(key, textTween(value)); } function transition_transition() { var name = this._name, id0 = this._id, id1 = newId(); for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { var inherit = get(node, id0); schedule(node, name, id1, i, group, { time: inherit.time + inherit.delay + inherit.duration, delay: 0, duration: inherit.duration, ease: inherit.ease }); } } } return new Transition(groups, this._parents, name, id1); } function transition_end() { var on0, on1, that = this, id = that._id, size = that.size(); return new Promise(function(resolve, reject) { var cancel = {value: reject}, end = {value: function() { if (--size === 0) resolve(); }}; that.each(function() { var schedule = set(this, id), on = schedule.on; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0) { on1 = (on0 = on).copy(); on1._.cancel.push(cancel); on1._.interrupt.push(cancel); on1._.end.push(end); } schedule.on = on1; }); // The selection was empty, resolve end immediately if (size === 0) resolve(); }); } var id = 0; function Transition(groups, parents, name, id) { this._groups = groups; this._parents = parents; this._name = name; this._id = id; } function newId() { return ++id; } var selection_prototype = selection.prototype; Transition.prototype = { constructor: Transition, select: transition_select, selectAll: transition_selectAll, selectChild: selection_prototype.selectChild, selectChildren: selection_prototype.selectChildren, filter: transition_filter, merge: transition_merge, selection: transition_selection, transition: transition_transition, call: selection_prototype.call, nodes: selection_prototype.nodes, node: selection_prototype.node, size: selection_prototype.size, empty: selection_prototype.empty, each: selection_prototype.each, on: transition_on, attr: transition_attr, attrTween: transition_attrTween, style: transition_style, styleTween: transition_styleTween, text: transition_text, textTween: transition_textTween, remove: transition_remove, tween: transition_tween, delay: transition_delay, duration: transition_duration, ease: transition_ease, easeVarying: transition_easeVarying, end: transition_end, [Symbol.iterator]: selection_prototype[Symbol.iterator] }; function cubicInOut(t) { return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2; } var defaultTiming = { time: null, // Set on use. delay: 0, duration: 250, ease: cubicInOut }; function inherit(node, id) { var timing; while (!(timing = node.__transition) || !(timing = timing[id])) { if (!(node = node.parentNode)) { throw new Error(`transition ${id} not found`); } } return timing; } function selection_transition(name) { var id, timing; if (name instanceof Transition) { id = name._id, name = name._name; } else { id = newId(), (timing = defaultTiming).time = now$2(), name = name == null ? null : name + ""; } for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { schedule(node, name, id, i, group, timing || inherit(node, id)); } } } return new Transition(groups, this._parents, name, id); } selection.prototype.interrupt = selection_interrupt; selection.prototype.transition = selection_transition; var constant$1 = x => () => x; function ZoomEvent(type, { sourceEvent, target, transform, dispatch }) { Object.defineProperties(this, { type: {value: type, enumerable: true, configurable: true}, sourceEvent: {value: sourceEvent, enumerable: true, configurable: true}, target: {value: target, enumerable: true, configurable: true}, transform: {value: transform, enumerable: true, configurable: true}, _: {value: dispatch} }); } function Transform(k, x, y) { this.k = k; this.x = x; this.y = y; } Transform.prototype = { constructor: Transform, scale: function(k) { return k === 1 ? this : new Transform(this.k * k, this.x, this.y); }, translate: function(x, y) { return x === 0 & y === 0 ? this : new Transform(this.k, this.x + this.k * x, this.y + this.k * y); }, apply: function(point) { return [point[0] * this.k + this.x, point[1] * this.k + this.y]; }, applyX: function(x) { return x * this.k + this.x; }, applyY: function(y) { return y * this.k + this.y; }, invert: function(location) { return [(location[0] - this.x) / this.k, (location[1] - this.y) / this.k]; }, invertX: function(x) { return (x - this.x) / this.k; }, invertY: function(y) { return (y - this.y) / this.k; }, rescaleX: function(x) { return x.copy().domain(x.range().map(this.invertX, this).map(x.invert, x)); }, rescaleY: function(y) { return y.copy().domain(y.range().map(this.invertY, this).map(y.invert, y)); }, toString: function() { return "translate(" + this.x + "," + this.y + ") scale(" + this.k + ")"; } }; var identity = new Transform(1, 0, 0); transform.prototype = Transform.prototype; function transform(node) { while (!node.__zoom) if (!(node = node.parentNode)) return identity; return node.__zoom; } function nopropagation(event) { event.stopImmediatePropagation(); } function noevent(event) { event.preventDefault(); event.stopImmediatePropagation(); } // Ignore right-click, since that should open the context menu. // except for pinch-to-zoom, which is sent as a wheel+ctrlKey event function defaultFilter(event) { return (!event.ctrlKey || event.type === 'wheel') && !event.button; } function defaultExtent() { var e = this; if (e instanceof SVGElement) { e = e.ownerSVGElement || e; if (e.hasAttribute("viewBox")) { e = e.viewBox.baseVal; return [[e.x, e.y], [e.x + e.width, e.y + e.height]]; } return [[0, 0], [e.width.baseVal.value, e.height.baseVal.value]]; } return [[0, 0], [e.clientWidth, e.clientHeight]]; } function defaultTransform() { return this.__zoom || identity; } function defaultWheelDelta(event) { return -event.deltaY * (event.deltaMode === 1 ? 0.05 : event.deltaMode ? 1 : 0.002) * (event.ctrlKey ? 10 : 1); } function defaultTouchable() { return navigator.maxTouchPoints || ("ontouchstart" in this); } function defaultConstrain(transform, extent, translateExtent) { var dx0 = transform.invertX(extent[0][0]) - translateExtent[0][0], dx1 = transform.invertX(extent[1][0]) - translateExtent[1][0], dy0 = transform.invertY(extent[0][1]) - translateExtent[0][1], dy1 = transform.invertY(extent[1][1]) - translateExtent[1][1]; return transform.translate( dx1 > dx0 ? (dx0 + dx1) / 2 : Math.min(0, dx0) || Math.max(0, dx1), dy1 > dy0 ? (dy0 + dy1) / 2 : Math.min(0, dy0) || Math.max(0, dy1) ); } function d3Zoom() { var filter = defaultFilter, extent = defaultExtent, constrain = defaultConstrain, wheelDelta = defaultWheelDelta, touchable = defaultTouchable, scaleExtent = [0, Infinity], translateExtent = [[-Infinity, -Infinity], [Infinity, Infinity]], duration = 250, interpolate = interpolateZoom, listeners = dispatch("start", "zoom", "end"), touchstarting, touchfirst, touchending, touchDelay = 500, wheelDelay = 150, clickDistance2 = 0, tapDistance = 10; function zoom(selection) { selection .property("__zoom", defaultTransform) .on("wheel.zoom", wheeled, {passive: false}) .on("mousedown.zoom", mousedowned) .on("dblclick.zoom", dblclicked) .filter(touchable) .on("touchstart.zoom", touchstarted) .on("touchmove.zoom", touchmoved) .on("touchend.zoom touchcancel.zoom", touchended) .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)"); } zoom.transform = function(collection, transform, point, event) { var selection = collection.selection ? collection.selection() : collection; selection.property("__zoom", defaultTransform); if (collection !== selection) { schedule(collection, transform, point, event); } else { selection.interrupt().each(function() { gesture(this, arguments) .event(event) .start() .zoom(null, typeof transform === "function" ? transform.apply(this, arguments) : transform) .end(); }); } }; zoom.scaleBy = function(selection, k, p, event) { zoom.scaleTo(selection, function() { var k0 = this.__zoom.k, k1 = typeof k === "function" ? k.apply(this, arguments) : k; return k0 * k1; }, p, event); }; zoom.scaleTo = function(selection, k, p, event) { zoom.transform(selection, function() { var e = extent.apply(this, arguments), t0 = this.__zoom, p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p, p1 = t0.invert(p0), k1 = typeof k === "function" ? k.apply(this, arguments) : k; return constrain(translate(scale(t0, k1), p0, p1), e, translateExtent); }, p, event); }; zoom.translateBy = function(selection, x, y, event) { zoom.transform(selection, function() { return constrain(this.__zoom.translate( typeof x === "function" ? x.apply(this, arguments) : x, typeof y === "function" ? y.apply(this, arguments) : y ), extent.apply(this, arguments), translateExtent); }, null, event); }; zoom.translateTo = function(selection, x, y, p, event) { zoom.transform(selection, function() { var e = extent.apply(this, arguments), t = this.__zoom, p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p; return constrain(identity.translate(p0[0], p0[1]).scale(t.k).translate( typeof x === "function" ? -x.apply(this, arguments) : -x, typeof y === "function" ? -y.apply(this, arguments) : -y ), e, translateExtent); }, p, event); }; function scale(transform, k) { k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], k)); return k === transform.k ? transform : new Transform(k, transform.x, transform.y); } function translate(transform, p0, p1) { var x = p0[0] - p1[0] * transform.k, y = p0[1] - p1[1] * transform.k; return x === transform.x && y === transform.y ? transform : new Transform(transform.k, x, y); } function centroid(extent) { return [(+extent[0][0] + +extent[1][0]) / 2, (+extent[0][1] + +extent[1][1]) / 2]; } function schedule(transition, transform, point, event) { transition .on("start.zoom", function() { gesture(this, arguments).event(event).start(); }) .on("interrupt.zoom end.zoom", function() { gesture(this, arguments).event(event).end(); }) .tween("zoom", function() { var that = this, args = arguments, g = gesture(that, args).event(event), e = extent.apply(that, args), p = point == null ? centroid(e) : typeof point === "function" ? point.apply(that, args) : point, w = Math.max(e[1][0] - e[0][0], e[1][1] - e[0][1]), a = that.__zoom, b = typeof transform === "function" ? transform.apply(that, args) : transform, i = interpolate(a.invert(p).concat(w / a.k), b.invert(p).concat(w / b.k)); return function(t) { if (t === 1) t = b; // Avoid rounding error on end. else { var l = i(t), k = w / l[2]; t = new Transform(k, p[0] - l[0] * k, p[1] - l[1] * k); } g.zoom(null, t); }; }); } function gesture(that, args, clean) { return (!clean && that.__zooming) || new Gesture(that, args); } function Gesture(that, args) { this.that = that; this.args = args; this.active = 0; this.sourceEvent = null; this.extent = extent.apply(that, args); this.taps = 0; } Gesture.prototype = { event: function(event) { if (event) this.sourceEvent = event; return this; }, start: function() { if (++this.active === 1) { this.that.__zooming = this; this.emit("start"); } return this; }, zoom: function(key, transform) { if (this.mouse && key !== "mouse") this.mouse[1] = transform.invert(this.mouse[0]); if (this.touch0 && key !== "touch") this.touch0[1] = transform.invert(this.touch0[0]); if (this.touch1 && key !== "touch") this.touch1[1] = transform.invert(this.touch1[0]); this.that.__zoom = transform; this.emit("zoom"); return this; }, end: function() { if (--this.active === 0) { delete this.that.__zooming; this.emit("end"); } return this; }, emit: function(type) { var d = d3Select(this.that).datum(); listeners.call( type, this.that, new ZoomEvent(type, { sourceEvent: this.sourceEvent, target: zoom, type, transform: this.that.__zoom, dispatch: listeners }), d ); } }; function wheeled(event, ...args) { if (!filter.apply(this, arguments)) return; var g = gesture(this, args).event(event), t = this.__zoom, k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], t.k * Math.pow(2, wheelDelta.apply(this, arguments)))), p = pointer(event); // If the mouse is in the same location as before, reuse it. // If there were recent wheel events, reset the wheel idle timeout. if (g.wheel) { if (g.mouse[0][0] !== p[0] || g.mouse[0][1] !== p[1]) { g.mouse[1] = t.invert(g.mouse[0] = p); } clearTimeout(g.wheel); } // If this wheel event won’t trigger a transform change, ignore it. else if (t.k === k) return; // Otherwise, capture the mouse point and location at the start. else { g.mouse = [p, t.invert(p)]; interrupt(this); g.start(); } noevent(event); g.wheel = setTimeout(wheelidled, wheelDelay); g.zoom("mouse", constrain(translate(scale(t, k), g.mouse[0], g.mouse[1]), g.extent, translateExtent)); function wheelidled() { g.wheel = null; g.end(); } } function mousedowned(event, ...args) { if (touchending || !filter.apply(this, arguments)) return; var currentTarget = event.currentTarget, g = gesture(this, args, true).event(event), v = d3Select(event.view).on("mousemove.zoom", mousemoved, true).on("mouseup.zoom", mouseupped, true), p = pointer(event, currentTarget), x0 = event.clientX, y0 = event.clientY; dragDisable(event.view); nopropagation(event); g.mouse = [p, this.__zoom.invert(p)]; interrupt(this); g.start(); function mousemoved(event) { noevent(event); if (!g.moved) { var dx = event.clientX - x0, dy = event.clientY - y0; g.moved = dx * dx + dy * dy > clickDistance2; } g.event(event) .zoom("mouse", constrain(translate(g.that.__zoom, g.mouse[0] = pointer(event, currentTarget), g.mouse[1]), g.extent, translateExtent)); } function mouseupped(event) { v.on("mousemove.zoom mouseup.zoom", null); yesdrag(event.view, g.moved); noevent(event); g.event(event).end(); } } function dblclicked(event, ...args) { if (!filter.apply(this, arguments)) return; var t0 = this.__zoom, p0 = pointer(event.changedTouches ? event.changedTouches[0] : event, this), p1 = t0.invert(p0), k1 = t0.k * (event.shiftKey ? 0.5 : 2), t1 = constrain(translate(scale(t0, k1), p0, p1), extent.apply(this, args), translateExtent); noevent(event); if (duration > 0) d3Select(this).transition().duration(duration).call(schedule, t1, p0, event); else d3Select(this).call(zoom.transform, t1, p0, event); } function touchstarted(event, ...args) { if (!filter.apply(this, arguments)) return; var touches = event.touches, n = touches.length, g = gesture(this, args, event.changedTouches.length === n).event(event), started, i, t, p; nopropagation(event); for (i = 0; i < n; ++i) { t = touches[i], p = pointer(t, this); p = [p, this.__zoom.invert(p), t.identifier]; if (!g.touch0) g.touch0 = p, started = true, g.taps = 1 + !!touchstarting; else if (!g.touch1 && g.touch0[2] !== p[2]) g.touch1 = p, g.taps = 0; } if (touchstarting) touchstarting = clearTimeout(touchstarting); if (started) { if (g.taps < 2) touchfirst = p[0], touchstarting = setTimeout(function() { touchstarting = null; }, touchDelay); interrupt(this); g.start(); } } function touchmoved(event, ...args) { if (!this.__zooming) return; var g = gesture(this, args).event(event), touches = event.changedTouches, n = touches.length, i, t, p, l; noevent(event); for (i = 0; i < n; ++i) { t = touches[i], p = pointer(t, this); if (g.touch0 && g.touch0[2] === t.identifier) g.touch0[0] = p; else if (g.touch1 && g.touch1[2] === t.identifier) g.touch1[0] = p; } t = g.that.__zoom; if (g.touch1) { var p0 = g.touch0[0], l0 = g.touch0[1], p1 = g.touch1[0], l1 = g.touch1[1], dp = (dp = p1[0] - p0[0]) * dp + (dp = p1[1] - p0[1]) * dp, dl = (dl = l1[0] - l0[0]) * dl + (dl = l1[1] - l0[1]) * dl; t = scale(t, Math.sqrt(dp / dl)); p = [(p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2]; l = [(l0[0] + l1[0]) / 2, (l0[1] + l1[1]) / 2]; } else if (g.touch0) p = g.touch0[0], l = g.touch0[1]; else return; g.zoom("touch", constrain(translate(t, p, l), g.extent, translateExtent)); } function touchended(event, ...args) { if (!this.__zooming) return; var g = gesture(this, args).event(event), touches = event.changedTouches, n = touches.length, i, t; nopropagation(event); if (touchending) clearTimeout(touchending); touchending = setTimeout(function() { touchending = null; }, touchDelay); for (i = 0; i < n; ++i) { t = touches[i]; if (g.touch0 && g.touch0[2] === t.identifier) delete g.touch0; else if (g.touch1 && g.touch1[2] === t.identifier) delete g.touch1; } if (g.touch1 && !g.touch0) g.touch0 = g.touch1, delete g.touch1; if (g.touch0) g.touch0[1] = this.__zoom.invert(g.touch0[0]); else { g.end(); // If this was a dbltap, reroute to the (optional) dblclick.zoom handler. if (g.taps === 2) { t = pointer(t, this); if (Math.hypot(touchfirst[0] - t[0], touchfirst[1] - t[1]) < tapDistance) { var p = d3Select(this).on("dblclick.zoom"); if (p) p.apply(this, arguments); } } } } zoom.wheelDelta = function(_) { return arguments.length ? (wheelDelta = typeof _ === "function" ? _ : constant$1(+_), zoom) : wheelDelta; }; zoom.filter = function(_) { return arguments.length ? (filter = typeof _ === "function" ? _ : constant$1(!!_), zoom) : filter; }; zoom.touchable = function(_) { return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$1(!!_), zoom) : touchable; }; zoom.extent = function(_) { return arguments.length ? (extent = typeof _ === "function" ? _ : constant$1([[+_[0][0], +_[0][1]], [+_[1][0], +_[1][1]]]), zoom) : extent; }; zoom.scaleExtent = function(_) { return arguments.length ? (scaleExtent[0] = +_[0], scaleExtent[1] = +_[1], zoom) : [scaleExtent[0], scaleExtent[1]]; }; zoom.translateExtent = function(_) { return arguments.length ? (translateExtent[0][0] = +_[0][0], translateExtent[1][0] = +_[1][0], translateExtent[0][1] = +_[0][1], translateExtent[1][1] = +_[1][1], zoom) : [[translateExtent[0][0], translateExtent[0][1]], [translateExtent[1][0], translateExtent[1][1]]]; }; zoom.constrain = function(_) { return arguments.length ? (constrain = _, zoom) : constrain; }; zoom.duration = function(_) { return arguments.length ? (duration = +_, zoom) : duration; }; zoom.interpolate = function(_) { return arguments.length ? (interpolate = _, zoom) : interpolate; }; zoom.on = function() { var value = listeners.on.apply(listeners, arguments); return value === listeners ? zoom : value; }; zoom.clickDistance = function(_) { return arguments.length ? (clickDistance2 = (_ = +_) * _, zoom) : Math.sqrt(clickDistance2); }; zoom.tapDistance = function(_) { return arguments.length ? (tapDistance = +_, zoom) : tapDistance; }; return zoom; } class InternMap extends Map { constructor(entries, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (entries != null) for (const [key, value] of entries) this.set(key, value); } get(key) { return super.get(intern_get(this, key)); } has(key) { return super.has(intern_get(this, key)); } set(key, value) { return super.set(intern_set(this, key), value); } delete(key) { return super.delete(intern_delete(this, key)); } } function intern_get({_intern, _key}, value) { const key = _key(value); return _intern.has(key) ? _intern.get(key) : value; } function intern_set({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) return _intern.get(key); _intern.set(key, value); return value; } function intern_delete({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) { value = _intern.get(key); _intern.delete(key); } return value; } function keyof(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function max$1(values, valueof) { let max; if (valueof === undefined) { for (const value of values) { if (value != null && (max < value || (max === undefined && value >= value))) { max = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value; } } } return max; } function min$1(values, valueof) { let min; if (valueof === undefined) { for (const value of values) { if (value != null && (min > value || (min === undefined && value >= value))) { min = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value; } } } return min; } /** Detect free variable `global` from Node.js. */ var freeGlobal = typeof global == 'object' && global && global.Object === Object && global; /** Detect free variable `self`. */ var freeSelf = typeof self == 'object' && self && self.Object === Object && self; /** Used as a reference to the global object. */ var root = freeGlobal || freeSelf || Function('return this')(); /** Built-in value references. */ var Symbol$1 = root.Symbol; /** Used for built-in method references. */ var objectProto$1 = Object.prototype; /** Used to check objects for own properties. */ var hasOwnProperty = objectProto$1.hasOwnProperty; /** * Used to resolve the * [`toStringTag`](http://ecma-international.org/ecma-262/7.0/#sec-object.prototype.tostring) * of values. */ var nativeObjectToString$1 = objectProto$1.toString; /** Built-in value references. */ var symToStringTag$1 = Symbol$1 ? Symbol$1.toStringTag : undefined; /** * A specialized version of `baseGetTag` which ignores `Symbol.toStringTag` values. * * @private * @param {*} value The value to query. * @returns {string} Returns the raw `toStringTag`. */ function getRawTag(value) { var isOwn = hasOwnProperty.call(value, symToStringTag$1), tag = value[symToStringTag$1]; try { value[symToStringTag$1] = undefined; var unmasked = true; } catch (e) {} var result = nativeObjectToString$1.call(value); if (unmasked) { if (isOwn) { value[symToStringTag$1] = tag; } else { delete value[symToStringTag$1]; } } return result; } /** Used for built-in method references. */ var objectProto = Object.prototype; /** * Used to resolve the * [`toStringTag`](http://ecma-international.org/ecma-262/7.0/#sec-object.prototype.tostring) * of values. */ var nativeObjectToString = objectProto.toString; /** * Converts `value` to a string using `Object.prototype.toString`. * * @private * @param {*} value The value to convert. * @returns {string} Returns the converted string. */ function objectToString(value) { return nativeObjectToString.call(value); } /** `Object#toString` result references. */ var nullTag = '[object Null]', undefinedTag = '[object Undefined]'; /** Built-in value references. */ var symToStringTag = Symbol$1 ? Symbol$1.toStringTag : undefined; /** * The base implementation of `getTag` without fallbacks for buggy environments. * * @private * @param {*} value The value to query. * @returns {string} Returns the `toStringTag`. */ function baseGetTag(value) { if (value == null) { return value === undefined ? undefinedTag : nullTag; } return (symToStringTag && symToStringTag in Object(value)) ? getRawTag(value) : objectToString(value); } /** * Checks if `value` is object-like. A value is object-like if it's not `null` * and has a `typeof` result of "object". * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is object-like, else `false`. * @example * * _.isObjectLike({}); * // => true * * _.isObjectLike([1, 2, 3]); * // => true * * _.isObjectLike(_.noop); * // => false * * _.isObjectLike(null); * // => false */ function isObjectLike(value) { return value != null && typeof value == 'object'; } /** `Object#toString` result references. */ var symbolTag = '[object Symbol]'; /** * Checks if `value` is classified as a `Symbol` primitive or object. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is a symbol, else `false`. * @example * * _.isSymbol(Symbol.iterator); * // => true * * _.isSymbol('abc'); * // => false */ function isSymbol(value) { return typeof value == 'symbol' || (isObjectLike(value) && baseGetTag(value) == symbolTag); } /** Used to match a single whitespace character. */ var reWhitespace = /\s/; /** * Used by `_.trim` and `_.trimEnd` to get the index of the last non-whitespace * character of `string`. * * @private * @param {string} string The string to inspect. * @returns {number} Returns the index of the last non-whitespace character. */ function trimmedEndIndex(string) { var index = string.length; while (index-- && reWhitespace.test(string.charAt(index))) {} return index; } /** Used to match leading whitespace. */ var reTrimStart = /^\s+/; /** * The base implementation of `_.trim`. * * @private * @param {string} string The string to trim. * @returns {string} Returns the trimmed string. */ function baseTrim(string) { return string ? string.slice(0, trimmedEndIndex(string) + 1).replace(reTrimStart, '') : string; } /** * Checks if `value` is the * [language type](http://www.ecma-international.org/ecma-262/7.0/#sec-ecmascript-language-types) * of `Object`. (e.g. arrays, functions, objects, regexes, `new Number(0)`, and `new String('')`) * * @static * @memberOf _ * @since 0.1.0 * @category Lang * @param {*} value The value to check. * @returns {boolean} Returns `true` if `value` is an object, else `false`. * @example * * _.isObject({}); * // => true * * _.isObject([1, 2, 3]); * // => true * * _.isObject(_.noop); * // => true * * _.isObject(null); * // => false */ function isObject(value) { var type = typeof value; return value != null && (type == 'object' || type == 'function'); } /** Used as references for various `Number` constants. */ var NAN = 0 / 0; /** Used to detect bad signed hexadecimal string values. */ var reIsBadHex = /^[-+]0x[0-9a-f]+$/i; /** Used to detect binary string values. */ var reIsBinary = /^0b[01]+$/i; /** Used to detect octal string values. */ var reIsOctal = /^0o[0-7]+$/i; /** Built-in method references without a dependency on `root`. */ var freeParseInt = parseInt; /** * Converts `value` to a number. * * @static * @memberOf _ * @since 4.0.0 * @category Lang * @param {*} value The value to process. * @returns {number} Returns the number. * @example * * _.toNumber(3.2); * // => 3.2 * * _.toNumber(Number.MIN_VALUE); * // => 5e-324 * * _.toNumber(Infinity); * // => Infinity * * _.toNumber('3.2'); * // => 3.2 */ function toNumber(value) { if (typeof value == 'number') { return value; } if (isSymbol(value)) { return NAN; } if (isObject(value)) { var other = typeof value.valueOf == 'function' ? value.valueOf() : value; value = isObject(other) ? (other + '') : other; } if (typeof value != 'string') { return value === 0 ? value : +value; } value = baseTrim(value); var isBinary = reIsBinary.test(value); return (isBinary || reIsOctal.test(value)) ? freeParseInt(value.slice(2), isBinary ? 2 : 8) : (reIsBadHex.test(value) ? NAN : +value); } /** * Gets the timestamp of the number of milliseconds that have elapsed since * the Unix epoch (1 January 1970 00:00:00 UTC). * * @static * @memberOf _ * @since 2.4.0 * @category Date * @returns {number} Returns the timestamp. * @example * * _.defer(function(stamp) { * console.log(_.now() - stamp); * }, _.now()); * // => Logs the number of milliseconds it took for the deferred invocation. */ var now$1 = function() { return root.Date.now(); }; /** Error message constants. */ var FUNC_ERROR_TEXT$1 = 'Expected a function'; /* Built-in method references for those with the same name as other `lodash` methods. */ var nativeMax = Math.max, nativeMin = Math.min; /** * Creates a debounced function that delays invoking `func` until after `wait` * milliseconds have elapsed since the last time the debounced function was * invoked. The debounced function comes with a `cancel` method to cancel * delayed `func` invocations and a `flush` method to immediately invoke them. * Provide `options` to indicate whether `func` should be invoked on the * leading and/or trailing edge of the `wait` timeout. The `func` is invoked * with the last arguments provided to the debounced function. Subsequent * calls to the debounced function return the result of the last `func` * invocation. * * **Note:** If `leading` and `trailing` options are `true`, `func` is * invoked on the trailing edge of the timeout only if the debounced function * is invoked more than once during the `wait` timeout. * * If `wait` is `0` and `leading` is `false`, `func` invocation is deferred * until to the next tick, similar to `setTimeout` with a timeout of `0`. * * See [David Corbacho's article](https://css-tricks.com/debouncing-throttling-explained-examples/) * for details over the differences between `_.debounce` and `_.throttle`. * * @static * @memberOf _ * @since 0.1.0 * @category Function * @param {Function} func The function to debounce. * @param {number} [wait=0] The number of milliseconds to delay. * @param {Object} [options={}] The options object. * @param {boolean} [options.leading=false] * Specify invoking on the leading edge of the timeout. * @param {number} [options.maxWait] * The maximum time `func` is allowed to be delayed before it's invoked. * @param {boolean} [options.trailing=true] * Specify invoking on the trailing edge of the timeout. * @returns {Function} Returns the new debounced function. * @example * * // Avoid costly calculations while the window size is in flux. * jQuery(window).on('resize', _.debounce(calculateLayout, 150)); * * // Invoke `sendMail` when clicked, debouncing subsequent calls. * jQuery(element).on('click', _.debounce(sendMail, 300, { * 'leading': true, * 'trailing': false * })); * * // Ensure `batchLog` is invoked once after 1 second of debounced calls. * var debounced = _.debounce(batchLog, 250, { 'maxWait': 1000 }); * var source = new EventSource('/stream'); * jQuery(source).on('message', debounced); * * // Cancel the trailing debounced invocation. * jQuery(window).on('popstate', debounced.cancel); */ function debounce(func, wait, options) { var lastArgs, lastThis, maxWait, result, timerId, lastCallTime, lastInvokeTime = 0, leading = false, maxing = false, trailing = true; if (typeof func != 'function') { throw new TypeError(FUNC_ERROR_TEXT$1); } wait = toNumber(wait) || 0; if (isObject(options)) { leading = !!options.leading; maxing = 'maxWait' in options; maxWait = maxing ? nativeMax(toNumber(options.maxWait) || 0, wait) : maxWait; trailing = 'trailing' in options ? !!options.trailing : trailing; } function invokeFunc(time) { var args = lastArgs, thisArg = lastThis; lastArgs = lastThis = undefined; lastInvokeTime = time; result = func.apply(thisArg, args); return result; } function leadingEdge(time) { // Reset any `maxWait` timer. lastInvokeTime = time; // Start the timer for the trailing edge. timerId = setTimeout(timerExpired, wait); // Invoke the leading edge. return leading ? invokeFunc(time) : result; } function remainingWait(time) { var timeSinceLastCall = time - lastCallTime, timeSinceLastInvoke = time - lastInvokeTime, timeWaiting = wait - timeSinceLastCall; return maxing ? nativeMin(timeWaiting, maxWait - timeSinceLastInvoke) : timeWaiting; } function shouldInvoke(time) { var timeSinceLastCall = time - lastCallTime, timeSinceLastInvoke = time - lastInvokeTime; // Either this is the first call, activity has stopped and we're at the // trailing edge, the system time has gone backwards and we're treating // it as the trailing edge, or we've hit the `maxWait` limit. return (lastCallTime === undefined || (timeSinceLastCall >= wait) || (timeSinceLastCall < 0) || (maxing && timeSinceLastInvoke >= maxWait)); } function timerExpired() { var time = now$1(); if (shouldInvoke(time)) { return trailingEdge(time); } // Restart the timer. timerId = setTimeout(timerExpired, remainingWait(time)); } function trailingEdge(time) { timerId = undefined; // Only invoke if we have `lastArgs` which means `func` has been // debounced at least once. if (trailing && lastArgs) { return invokeFunc(time); } lastArgs = lastThis = undefined; return result; } function cancel() { if (timerId !== undefined) { clearTimeout(timerId); } lastInvokeTime = 0; lastArgs = lastCallTime = lastThis = timerId = undefined; } function flush() { return timerId === undefined ? result : trailingEdge(now$1()); } function debounced() { var time = now$1(), isInvoking = shouldInvoke(time); lastArgs = arguments; lastThis = this; lastCallTime = time; if (isInvoking) { if (timerId === undefined) { return leadingEdge(lastCallTime); } if (maxing) { // Handle invocations in a tight loop. clearTimeout(timerId); timerId = setTimeout(timerExpired, wait); return invokeFunc(lastCallTime); } } if (timerId === undefined) { timerId = setTimeout(timerExpired, wait); } return result; } debounced.cancel = cancel; debounced.flush = flush; return debounced; } /** Error message constants. */ var FUNC_ERROR_TEXT = 'Expected a function'; /** * Creates a throttled function that only invokes `func` at most once per * every `wait` milliseconds. The throttled function comes with a `cancel` * method to cancel delayed `func` invocations and a `flush` method to * immediately invoke them. Provide `options` to indicate whether `func` * should be invoked on the leading and/or trailing edge of the `wait` * timeout. The `func` is invoked with the last arguments provided to the * throttled function. Subsequent calls to the throttled function return the * result of the last `func` invocation. * * **Note:** If `leading` and `trailing` options are `true`, `func` is * invoked on the trailing edge of the timeout only if the throttled function * is invoked more than once during the `wait` timeout. * * If `wait` is `0` and `leading` is `false`, `func` invocation is deferred * until to the next tick, similar to `setTimeout` with a timeout of `0`. * * See [David Corbacho's article](https://css-tricks.com/debouncing-throttling-explained-examples/) * for details over the differences between `_.throttle` and `_.debounce`. * * @static * @memberOf _ * @since 0.1.0 * @category Function * @param {Function} func The function to throttle. * @param {number} [wait=0] The number of milliseconds to throttle invocations to. * @param {Object} [options={}] The options object. * @param {boolean} [options.leading=true] * Specify invoking on the leading edge of the timeout. * @param {boolean} [options.trailing=true] * Specify invoking on the trailing edge of the timeout. * @returns {Function} Returns the new throttled function. * @example * * // Avoid excessively updating the position while scrolling. * jQuery(window).on('scroll', _.throttle(updatePosition, 100)); * * // Invoke `renewToken` when the click event is fired, but not more than once every 5 minutes. * var throttled = _.throttle(renewToken, 300000, { 'trailing': false }); * jQuery(element).on('click', throttled); * * // Cancel the trailing throttled invocation. * jQuery(window).on('popstate', throttled.cancel); */ function throttle(func, wait, options) { var leading = true, trailing = true; if (typeof func != 'function') { throw new TypeError(FUNC_ERROR_TEXT); } if (isObject(options)) { leading = 'leading' in options ? !!options.leading : leading; trailing = 'trailing' in options ? !!options.trailing : trailing; } return debounce(func, wait, { 'leading': leading, 'maxWait': wait, 'trailing': trailing }); } /** * The Ease class provides a collection of easing functions for use with tween.js. */ var Easing = Object.freeze({ Linear: Object.freeze({ None: function (amount) { return amount; }, In: function (amount) { return this.None(amount); }, Out: function (amount) { return this.None(amount); }, InOut: function (amount) { return this.None(amount); }, }), Quadratic: Object.freeze({ In: function (amount) { return amount * amount; }, Out: function (amount) { return amount * (2 - amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount; } return -0.5 * (--amount * (amount - 2) - 1); }, }), Cubic: Object.freeze({ In: function (amount) { return amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount + 2); }, }), Quartic: Object.freeze({ In: function (amount) { return amount * amount * amount * amount; }, Out: function (amount) { return 1 - --amount * amount * amount * amount; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount; } return -0.5 * ((amount -= 2) * amount * amount * amount - 2); }, }), Quintic: Object.freeze({ In: function (amount) { return amount * amount * amount * amount * amount; }, Out: function (amount) { return --amount * amount * amount * amount * amount + 1; }, InOut: function (amount) { if ((amount *= 2) < 1) { return 0.5 * amount * amount * amount * amount * amount; } return 0.5 * ((amount -= 2) * amount * amount * amount * amount + 2); }, }), Sinusoidal: Object.freeze({ In: function (amount) { return 1 - Math.sin(((1.0 - amount) * Math.PI) / 2); }, Out: function (amount) { return Math.sin((amount * Math.PI) / 2); }, InOut: function (amount) { return 0.5 * (1 - Math.sin(Math.PI * (0.5 - amount))); }, }), Exponential: Object.freeze({ In: function (amount) { return amount === 0 ? 0 : Math.pow(1024, amount - 1); }, Out: function (amount) { return amount === 1 ? 1 : 1 - Math.pow(2, -10 * amount); }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } if ((amount *= 2) < 1) { return 0.5 * Math.pow(1024, amount - 1); } return 0.5 * (-Math.pow(2, -10 * (amount - 1)) + 2); }, }), Circular: Object.freeze({ In: function (amount) { return 1 - Math.sqrt(1 - amount * amount); }, Out: function (amount) { return Math.sqrt(1 - --amount * amount); }, InOut: function (amount) { if ((amount *= 2) < 1) { return -0.5 * (Math.sqrt(1 - amount * amount) - 1); } return 0.5 * (Math.sqrt(1 - (amount -= 2) * amount) + 1); }, }), Elastic: Object.freeze({ In: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return -Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); }, Out: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } return Math.pow(2, -10 * amount) * Math.sin((amount - 0.1) * 5 * Math.PI) + 1; }, InOut: function (amount) { if (amount === 0) { return 0; } if (amount === 1) { return 1; } amount *= 2; if (amount < 1) { return -0.5 * Math.pow(2, 10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI); } return 0.5 * Math.pow(2, -10 * (amount - 1)) * Math.sin((amount - 1.1) * 5 * Math.PI) + 1; }, }), Back: Object.freeze({ In: function (amount) { var s = 1.70158; return amount === 1 ? 1 : amount * amount * ((s + 1) * amount - s); }, Out: function (amount) { var s = 1.70158; return amount === 0 ? 0 : --amount * amount * ((s + 1) * amount + s) + 1; }, InOut: function (amount) { var s = 1.70158 * 1.525; if ((amount *= 2) < 1) { return 0.5 * (amount * amount * ((s + 1) * amount - s)); } return 0.5 * ((amount -= 2) * amount * ((s + 1) * amount + s) + 2); }, }), Bounce: Object.freeze({ In: function (amount) { return 1 - Easing.Bounce.Out(1 - amount); }, Out: function (amount) { if (amount < 1 / 2.75) { return 7.5625 * amount * amount; } else if (amount < 2 / 2.75) { return 7.5625 * (amount -= 1.5 / 2.75) * amount + 0.75; } else if (amount < 2.5 / 2.75) { return 7.5625 * (amount -= 2.25 / 2.75) * amount + 0.9375; } else { return 7.5625 * (amount -= 2.625 / 2.75) * amount + 0.984375; } }, InOut: function (amount) { if (amount < 0.5) { return Easing.Bounce.In(amount * 2) * 0.5; } return Easing.Bounce.Out(amount * 2 - 1) * 0.5 + 0.5; }, }), generatePow: function (power) { if (power === void 0) { power = 4; } power = power < Number.EPSILON ? Number.EPSILON : power; power = power > 10000 ? 10000 : power; return { In: function (amount) { return Math.pow(amount, power); }, Out: function (amount) { return 1 - Math.pow((1 - amount), power); }, InOut: function (amount) { if (amount < 0.5) { return Math.pow((amount * 2), power) / 2; } return (1 - Math.pow((2 - amount * 2), power)) / 2 + 0.5; }, }; }, }); var now = function () { return performance.now(); }; /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tween */ var Group = /** @class */ (function () { function Group() { this._tweens = {}; this._tweensAddedDuringUpdate = {}; } Group.prototype.getAll = function () { var _this = this; return Object.keys(this._tweens).map(function (tweenId) { return _this._tweens[tweenId]; }); }; Group.prototype.removeAll = function () { this._tweens = {}; }; Group.prototype.add = function (tween) { this._tweens[tween.getId()] = tween; this._tweensAddedDuringUpdate[tween.getId()] = tween; }; Group.prototype.remove = function (tween) { delete this._tweens[tween.getId()]; delete this._tweensAddedDuringUpdate[tween.getId()]; }; Group.prototype.update = function (time, preserve) { if (time === void 0) { time = now(); } if (preserve === void 0) { preserve = false; } var tweenIds = Object.keys(this._tweens); if (tweenIds.length === 0) { return false; } // Tweens are updated in "batches". If you add a new tween during an // update, then the new tween will be updated in the next batch. // If you remove a tween during an update, it may or may not be updated. // However, if the removed tween was added during the current batch, // then it will not be updated. while (tweenIds.length > 0) { this._tweensAddedDuringUpdate = {}; for (var i = 0; i < tweenIds.length; i++) { var tween = this._tweens[tweenIds[i]]; var autoStart = !preserve; if (tween && tween.update(time, autoStart) === false && !preserve) { delete this._tweens[tweenIds[i]]; } } tweenIds = Object.keys(this._tweensAddedDuringUpdate); } return true; }; return Group; }()); /** * */ var Interpolation = { Linear: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.Linear; if (k < 0) { return fn(v[0], v[1], f); } if (k > 1) { return fn(v[m], v[m - 1], m - f); } return fn(v[i], v[i + 1 > m ? m : i + 1], f - i); }, Bezier: function (v, k) { var b = 0; var n = v.length - 1; var pw = Math.pow; var bn = Interpolation.Utils.Bernstein; for (var i = 0; i <= n; i++) { b += pw(1 - k, n - i) * pw(k, i) * v[i] * bn(n, i); } return b; }, CatmullRom: function (v, k) { var m = v.length - 1; var f = m * k; var i = Math.floor(f); var fn = Interpolation.Utils.CatmullRom; if (v[0] === v[m]) { if (k < 0) { i = Math.floor((f = m * (1 + k))); } return fn(v[(i - 1 + m) % m], v[i], v[(i + 1) % m], v[(i + 2) % m], f - i); } else { if (k < 0) { return v[0] - (fn(v[0], v[0], v[1], v[1], -f) - v[0]); } if (k > 1) { return v[m] - (fn(v[m], v[m], v[m - 1], v[m - 1], f - m) - v[m]); } return fn(v[i ? i - 1 : 0], v[i], v[m < i + 1 ? m : i + 1], v[m < i + 2 ? m : i + 2], f - i); } }, Utils: { Linear: function (p0, p1, t) { return (p1 - p0) * t + p0; }, Bernstein: function (n, i) { var fc = Interpolation.Utils.Factorial; return fc(n) / fc(i) / fc(n - i); }, Factorial: (function () { var a = [1]; return function (n) { var s = 1; if (a[n]) { return a[n]; } for (var i = n; i > 1; i--) { s *= i; } a[n] = s; return s; }; })(), CatmullRom: function (p0, p1, p2, p3, t) { var v0 = (p2 - p0) * 0.5; var v1 = (p3 - p1) * 0.5; var t2 = t * t; var t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; }, }, }; /** * Utils */ var Sequence = /** @class */ (function () { function Sequence() { } Sequence.nextId = function () { return Sequence._nextId++; }; Sequence._nextId = 0; return Sequence; }()); var mainGroup = new Group(); /** * Tween.js - Licensed under the MIT license * https://github.com/tweenjs/tween.js * ---------------------------------------------- * * See https://github.com/tweenjs/tween.js/graphs/contributors for the full list of contributors. * Thank you all, you're awesome! */ var Tween = /** @class */ (function () { function Tween(_object, _group) { if (_group === void 0) { _group = mainGroup; } this._object = _object; this._group = _group; this._isPaused = false; this._pauseStart = 0; this._valuesStart = {}; this._valuesEnd = {}; this._valuesStartRepeat = {}; this._duration = 1000; this._isDynamic = false; this._initialRepeat = 0; this._repeat = 0; this._yoyo = false; this._isPlaying = false; this._reversed = false; this._delayTime = 0; this._startTime = 0; this._easingFunction = Easing.Linear.None; this._interpolationFunction = Interpolation.Linear; // eslint-disable-next-line this._chainedTweens = []; this._onStartCallbackFired = false; this._onEveryStartCallbackFired = false; this._id = Sequence.nextId(); this._isChainStopped = false; this._propertiesAreSetUp = false; this._goToEnd = false; } Tween.prototype.getId = function () { return this._id; }; Tween.prototype.isPlaying = function () { return this._isPlaying; }; Tween.prototype.isPaused = function () { return this._isPaused; }; Tween.prototype.getDuration = function () { return this._duration; }; Tween.prototype.to = function (target, duration) { if (duration === void 0) { duration = 1000; } if (this._isPlaying) throw new Error('Can not call Tween.to() while Tween is already started or paused. Stop the Tween first.'); this._valuesEnd = target; this._propertiesAreSetUp = false; this._duration = duration < 0 ? 0 : duration; return this; }; Tween.prototype.duration = function (duration) { if (duration === void 0) { duration = 1000; } this._duration = duration < 0 ? 0 : duration; return this; }; Tween.prototype.dynamic = function (dynamic) { if (dynamic === void 0) { dynamic = false; } this._isDynamic = dynamic; return this; }; Tween.prototype.start = function (time, overrideStartingValues) { if (time === void 0) { time = now(); } if (overrideStartingValues === void 0) { overrideStartingValues = false; } if (this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.add(this); this._repeat = this._initialRepeat; if (this._reversed) { // If we were reversed (f.e. using the yoyo feature) then we need to // flip the tween direction back to forward. this._reversed = false; for (var property in this._valuesStartRepeat) { this._swapEndStartRepeatValues(property); this._valuesStart[property] = this._valuesStartRepeat[property]; } } this._isPlaying = true; this._isPaused = false; this._onStartCallbackFired = false; this._onEveryStartCallbackFired = false; this._isChainStopped = false; this._startTime = time; this._startTime += this._delayTime; if (!this._propertiesAreSetUp || overrideStartingValues) { this._propertiesAreSetUp = true; // If dynamic is not enabled, clone the end values instead of using the passed-in end values. if (!this._isDynamic) { var tmp = {}; for (var prop in this._valuesEnd) tmp[prop] = this._valuesEnd[prop]; this._valuesEnd = tmp; } this._setupProperties(this._object, this._valuesStart, this._valuesEnd, this._valuesStartRepeat, overrideStartingValues); } return this; }; Tween.prototype.startFromCurrentValues = function (time) { return this.start(time, true); }; Tween.prototype._setupProperties = function (_object, _valuesStart, _valuesEnd, _valuesStartRepeat, overrideStartingValues) { for (var property in _valuesEnd) { var startValue = _object[property]; var startValueIsArray = Array.isArray(startValue); var propType = startValueIsArray ? 'array' : typeof startValue; var isInterpolationList = !startValueIsArray && Array.isArray(_valuesEnd[property]); // If `to()` specifies a property that doesn't exist in the source object, // we should not set that property in the object if (propType === 'undefined' || propType === 'function') { continue; } // Check if an Array was provided as property value if (isInterpolationList) { var endValues = _valuesEnd[property]; if (endValues.length === 0) { continue; } // Handle an array of relative values. // Creates a local copy of the Array with the start value at the front var temp = [startValue]; for (var i = 0, l = endValues.length; i < l; i += 1) { var value = this._handleRelativeValue(startValue, endValues[i]); if (isNaN(value)) { isInterpolationList = false; console.warn('Found invalid interpolation list. Skipping.'); break; } temp.push(value); } if (isInterpolationList) { // if (_valuesStart[property] === undefined) { // handle end values only the first time. NOT NEEDED? setupProperties is now guarded by _propertiesAreSetUp. _valuesEnd[property] = temp; // } } } // handle the deepness of the values if ((propType === 'object' || startValueIsArray) && startValue && !isInterpolationList) { _valuesStart[property] = startValueIsArray ? [] : {}; var nestedObject = startValue; for (var prop in nestedObject) { _valuesStart[property][prop] = nestedObject[prop]; } // TODO? repeat nested values? And yoyo? And array values? _valuesStartRepeat[property] = startValueIsArray ? [] : {}; var endValues = _valuesEnd[property]; // If dynamic is not enabled, clone the end values instead of using the passed-in end values. if (!this._isDynamic) { var tmp = {}; for (var prop in endValues) tmp[prop] = endValues[prop]; _valuesEnd[property] = endValues = tmp; } this._setupProperties(nestedObject, _valuesStart[property], endValues, _valuesStartRepeat[property], overrideStartingValues); } else { // Save the starting value, but only once unless override is requested. if (typeof _valuesStart[property] === 'undefined' || overrideStartingValues) { _valuesStart[property] = startValue; } if (!startValueIsArray) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStart[property] *= 1.0; // Ensures we're using numbers, not strings } if (isInterpolationList) { // eslint-disable-next-line // @ts-ignore FIXME? _valuesStartRepeat[property] = _valuesEnd[property].slice().reverse(); } else { _valuesStartRepeat[property] = _valuesStart[property] || 0; } } } }; Tween.prototype.stop = function () { if (!this._isChainStopped) { this._isChainStopped = true; this.stopChainedTweens(); } if (!this._isPlaying) { return this; } // eslint-disable-next-line this._group && this._group.remove(this); this._isPlaying = false; this._isPaused = false; if (this._onStopCallback) { this._onStopCallback(this._object); } return this; }; Tween.prototype.end = function () { this._goToEnd = true; this.update(Infinity); return this; }; Tween.prototype.pause = function (time) { if (time === void 0) { time = now(); } if (this._isPaused || !this._isPlaying) { return this; } this._isPaused = true; this._pauseStart = time; // eslint-disable-next-line this._group && this._group.remove(this); return this; }; Tween.prototype.resume = function (time) { if (time === void 0) { time = now(); } if (!this._isPaused || !this._isPlaying) { return this; } this._isPaused = false; this._startTime += time - this._pauseStart; this._pauseStart = 0; // eslint-disable-next-line this._group && this._group.add(this); return this; }; Tween.prototype.stopChainedTweens = function () { for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { this._chainedTweens[i].stop(); } return this; }; Tween.prototype.group = function (group) { if (group === void 0) { group = mainGroup; } this._group = group; return this; }; Tween.prototype.delay = function (amount) { if (amount === void 0) { amount = 0; } this._delayTime = amount; return this; }; Tween.prototype.repeat = function (times) { if (times === void 0) { times = 0; } this._initialRepeat = times; this._repeat = times; return this; }; Tween.prototype.repeatDelay = function (amount) { this._repeatDelayTime = amount; return this; }; Tween.prototype.yoyo = function (yoyo) { if (yoyo === void 0) { yoyo = false; } this._yoyo = yoyo; return this; }; Tween.prototype.easing = function (easingFunction) { if (easingFunction === void 0) { easingFunction = Easing.Linear.None; } this._easingFunction = easingFunction; return this; }; Tween.prototype.interpolation = function (interpolationFunction) { if (interpolationFunction === void 0) { interpolationFunction = Interpolation.Linear; } this._interpolationFunction = interpolationFunction; return this; }; // eslint-disable-next-line Tween.prototype.chain = function () { var tweens = []; for (var _i = 0; _i < arguments.length; _i++) { tweens[_i] = arguments[_i]; } this._chainedTweens = tweens; return this; }; Tween.prototype.onStart = function (callback) { this._onStartCallback = callback; return this; }; Tween.prototype.onEveryStart = function (callback) { this._onEveryStartCallback = callback; return this; }; Tween.prototype.onUpdate = function (callback) { this._onUpdateCallback = callback; return this; }; Tween.prototype.onRepeat = function (callback) { this._onRepeatCallback = callback; return this; }; Tween.prototype.onComplete = function (callback) { this._onCompleteCallback = callback; return this; }; Tween.prototype.onStop = function (callback) { this._onStopCallback = callback; return this; }; /** * @returns true if the tween is still playing after the update, false * otherwise (calling update on a paused tween still returns true because * it is still playing, just paused). */ Tween.prototype.update = function (time, autoStart) { var _this = this; var _a; if (time === void 0) { time = now(); } if (autoStart === void 0) { autoStart = true; } if (this._isPaused) return true; var property; var endTime = this._startTime + this._duration; if (!this._goToEnd && !this._isPlaying) { if (time > endTime) return false; if (autoStart) this.start(time, true); } this._goToEnd = false; if (time < this._startTime) { return true; } if (this._onStartCallbackFired === false) { if (this._onStartCallback) { this._onStartCallback(this._object); } this._onStartCallbackFired = true; } if (this._onEveryStartCallbackFired === false) { if (this._onEveryStartCallback) { this._onEveryStartCallback(this._object); } this._onEveryStartCallbackFired = true; } var elapsedTime = time - this._startTime; var durationAndDelay = this._duration + ((_a = this._repeatDelayTime) !== null && _a !== void 0 ? _a : this._delayTime); var totalTime = this._duration + this._repeat * durationAndDelay; var calculateElapsedPortion = function () { if (_this._duration === 0) return 1; if (elapsedTime > totalTime) { return 1; } var timesRepeated = Math.trunc(elapsedTime / durationAndDelay); var timeIntoCurrentRepeat = elapsedTime - timesRepeated * durationAndDelay; // TODO use %? // const timeIntoCurrentRepeat = elapsedTime % durationAndDelay var portion = Math.min(timeIntoCurrentRepeat / _this._duration, 1); if (portion === 0 && elapsedTime === _this._duration) { return 1; } return portion; }; var elapsed = calculateElapsedPortion(); var value = this._easingFunction(elapsed); // properties transformations this._updateProperties(this._object, this._valuesStart, this._valuesEnd, value); if (this._onUpdateCallback) { this._onUpdateCallback(this._object, elapsed); } if (this._duration === 0 || elapsedTime >= this._duration) { if (this._repeat > 0) { var completeCount = Math.min(Math.trunc((elapsedTime - this._duration) / durationAndDelay) + 1, this._repeat); if (isFinite(this._repeat)) { this._repeat -= completeCount; } // Reassign starting values, restart by making startTime = now for (property in this._valuesStartRepeat) { if (!this._yoyo && typeof this._valuesEnd[property] === 'string') { this._valuesStartRepeat[property] = // eslint-disable-next-line // @ts-ignore FIXME? this._valuesStartRepeat[property] + parseFloat(this._valuesEnd[property]); } if (this._yoyo) { this._swapEndStartRepeatValues(property); } this._valuesStart[property] = this._valuesStartRepeat[property]; } if (this._yoyo) { this._reversed = !this._reversed; } this._startTime += durationAndDelay * completeCount; if (this._onRepeatCallback) { this._onRepeatCallback(this._object); } this._onEveryStartCallbackFired = false; return true; } else { if (this._onCompleteCallback) { this._onCompleteCallback(this._object); } for (var i = 0, numChainedTweens = this._chainedTweens.length; i < numChainedTweens; i++) { // Make the chained tweens start exactly at the time they should, // even if the `update()` method was called way past the duration of the tween this._chainedTweens[i].start(this._startTime + this._duration, false); } this._isPlaying = false; return false; } } return true; }; Tween.prototype._updateProperties = function (_object, _valuesStart, _valuesEnd, value) { for (var property in _valuesEnd) { // Don't update properties that do not exist in the source object if (_valuesStart[property] === undefined) { continue; } var start = _valuesStart[property] || 0; var end = _valuesEnd[property]; var startIsArray = Array.isArray(_object[property]); var endIsArray = Array.isArray(end); var isInterpolationList = !startIsArray && endIsArray; if (isInterpolationList) { _object[property] = this._interpolationFunction(end, value); } else if (typeof end === 'object' && end) { // eslint-disable-next-line // @ts-ignore FIXME? this._updateProperties(_object[property], start, end, value); } else { // Parses relative end values with start as base (e.g.: +10, -3) end = this._handleRelativeValue(start, end); // Protect against non numeric properties. if (typeof end === 'number') { // eslint-disable-next-line // @ts-ignore FIXME? _object[property] = start + (end - start) * value; } } } }; Tween.prototype._handleRelativeValue = function (start, end) { if (typeof end !== 'string') { return end; } if (end.charAt(0) === '+' || end.charAt(0) === '-') { return start + parseFloat(end); } return parseFloat(end); }; Tween.prototype._swapEndStartRepeatValues = function (property) { var tmp = this._valuesStartRepeat[property]; var endValue = this._valuesEnd[property]; if (typeof endValue === 'string') { this._valuesStartRepeat[property] = this._valuesStartRepeat[property] + parseFloat(endValue); } else { this._valuesStartRepeat[property] = this._valuesEnd[property]; } this._valuesEnd[property] = tmp; }; return Tween; }()); /** * Controlling groups of tweens * * Using the TWEEN singleton to manage your tweens can cause issues in large apps with many components. * In these cases, you may want to create your own smaller groups of tweens. */ var TWEEN = mainGroup; // This is the best way to export things in a way that's compatible with both ES // Modules and CommonJS, without build hacks, and so as not to break the // existing API. // https://github.com/rollup/rollup/issues/1961#issuecomment-423037881 TWEEN.getAll.bind(TWEEN); TWEEN.removeAll.bind(TWEEN); TWEEN.add.bind(TWEEN); TWEEN.remove.bind(TWEEN); var update = TWEEN.update.bind(TWEEN); function _iterableToArrayLimit$1(r, l) { var t = null == r ? null : "undefined" != typeof Symbol && r[Symbol.iterator] || r["@@iterator"]; if (null != t) { var e, n, i, u, a = [], f = !0, o = !1; try { if (i = (t = t.call(r)).next, 0 === l) { if (Object(t) !== t) return; f = !1; } else for (; !(f = (e = i.call(t)).done) && (a.push(e.value), a.length !== l); f = !0); } catch (r) { o = !0, n = r; } finally { try { if (!f && null != t.return && (u = t.return(), Object(u) !== u)) return; } finally { if (o) throw n; } } return a; } } function _classCallCheck$1(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties$1(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey$2(descriptor.key), descriptor); } } function _createClass$1(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties$1(Constructor.prototype, protoProps); if (staticProps) _defineProperties$1(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _slicedToArray$1(arr, i) { return _arrayWithHoles$1(arr) || _iterableToArrayLimit$1(arr, i) || _unsupportedIterableToArray$2(arr, i) || _nonIterableRest$1(); } function _arrayWithHoles$1(arr) { if (Array.isArray(arr)) return arr; } function _unsupportedIterableToArray$2(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$2(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$2(o, minLen); } function _arrayLikeToArray$2(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableRest$1() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive$2(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey$2(arg) { var key = _toPrimitive$2(arg, "string"); return typeof key === "symbol" ? key : String(key); } var Prop = /*#__PURE__*/_createClass$1(function Prop(name, _ref) { var _ref$default = _ref["default"], defaultVal = _ref$default === void 0 ? null : _ref$default, _ref$triggerUpdate = _ref.triggerUpdate, triggerUpdate = _ref$triggerUpdate === void 0 ? true : _ref$triggerUpdate, _ref$onChange = _ref.onChange, onChange = _ref$onChange === void 0 ? function (newVal, state) {} : _ref$onChange; _classCallCheck$1(this, Prop); this.name = name; this.defaultVal = defaultVal; this.triggerUpdate = triggerUpdate; this.onChange = onChange; }); function index$3 (_ref2) { var _ref2$stateInit = _ref2.stateInit, stateInit = _ref2$stateInit === void 0 ? function () { return {}; } : _ref2$stateInit, _ref2$props = _ref2.props, rawProps = _ref2$props === void 0 ? {} : _ref2$props, _ref2$methods = _ref2.methods, methods = _ref2$methods === void 0 ? {} : _ref2$methods, _ref2$aliases = _ref2.aliases, aliases = _ref2$aliases === void 0 ? {} : _ref2$aliases, _ref2$init = _ref2.init, initFn = _ref2$init === void 0 ? function () {} : _ref2$init, _ref2$update = _ref2.update, updateFn = _ref2$update === void 0 ? function () {} : _ref2$update; // Parse props into Prop instances var props = Object.keys(rawProps).map(function (propName) { return new Prop(propName, rawProps[propName]); }); return function () { var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; // Holds component state var state = Object.assign({}, stateInit instanceof Function ? stateInit(options) : stateInit, // Support plain objects for backwards compatibility { initialised: false }); // keeps track of which props triggered an update var changedProps = {}; // Component constructor function comp(nodeElement) { initStatic(nodeElement, options); digest(); return comp; } var initStatic = function initStatic(nodeElement, options) { initFn.call(comp, nodeElement, state, options); state.initialised = true; }; var digest = debounce(function () { if (!state.initialised) { return; } updateFn.call(comp, state, changedProps); changedProps = {}; }, 1); // Getter/setter methods props.forEach(function (prop) { comp[prop.name] = getSetProp(prop); function getSetProp(_ref3) { var prop = _ref3.name, _ref3$triggerUpdate = _ref3.triggerUpdate, redigest = _ref3$triggerUpdate === void 0 ? false : _ref3$triggerUpdate, _ref3$onChange = _ref3.onChange, onChange = _ref3$onChange === void 0 ? function (newVal, state) {} : _ref3$onChange, _ref3$defaultVal = _ref3.defaultVal, defaultVal = _ref3$defaultVal === void 0 ? null : _ref3$defaultVal; return function (_) { var curVal = state[prop]; if (!arguments.length) { return curVal; } // Getter mode var val = _ === undefined ? defaultVal : _; // pick default if value passed is undefined state[prop] = val; onChange.call(comp, val, state, curVal); // track changed props !changedProps.hasOwnProperty(prop) && (changedProps[prop] = curVal); if (redigest) { digest(); } return comp; }; } }); // Other methods Object.keys(methods).forEach(function (methodName) { comp[methodName] = function () { var _methods$methodName; for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } return (_methods$methodName = methods[methodName]).call.apply(_methods$methodName, [comp, state].concat(args)); }; }); // Link aliases Object.entries(aliases).forEach(function (_ref4) { var _ref5 = _slicedToArray$1(_ref4, 2), alias = _ref5[0], target = _ref5[1]; return comp[alias] = comp[target]; }); // Reset all component props to their default value comp.resetProps = function () { props.forEach(function (prop) { comp[prop.name](prop.defaultVal); }); return comp; }; // comp.resetProps(); // Apply all prop defaults state._rerender = digest; // Expose digest method return comp; }; } var index$2 = (function (p) { return typeof p === 'function' ? p // fn : typeof p === 'string' ? function (obj) { return obj[p]; } // property name : function (obj) { return p; }; }); // constant // This file is autogenerated. It's used to publish ESM to npm. function _typeof(obj) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof(obj); } // https://github.com/bgrins/TinyColor // Brian Grinstead, MIT License var trimLeft = /^\s+/; var trimRight = /\s+$/; function tinycolor(color, opts) { color = color ? color : ""; opts = opts || {}; // If input is already a tinycolor, return itself if (color instanceof tinycolor) { return color; } // If we are called as a function, call using new instead if (!(this instanceof tinycolor)) { return new tinycolor(color, opts); } var rgb = inputToRGB(color); this._originalInput = color, this._r = rgb.r, this._g = rgb.g, this._b = rgb.b, this._a = rgb.a, this._roundA = Math.round(100 * this._a) / 100, this._format = opts.format || rgb.format; this._gradientType = opts.gradientType; // Don't let the range of [0,255] come back in [0,1]. // Potentially lose a little bit of precision here, but will fix issues where // .5 gets interpreted as half of the total, instead of half of 1 // If it was supposed to be 128, this was already taken care of by `inputToRgb` if (this._r < 1) this._r = Math.round(this._r); if (this._g < 1) this._g = Math.round(this._g); if (this._b < 1) this._b = Math.round(this._b); this._ok = rgb.ok; } tinycolor.prototype = { isDark: function isDark() { return this.getBrightness() < 128; }, isLight: function isLight() { return !this.isDark(); }, isValid: function isValid() { return this._ok; }, getOriginalInput: function getOriginalInput() { return this._originalInput; }, getFormat: function getFormat() { return this._format; }, getAlpha: function getAlpha() { return this._a; }, getBrightness: function getBrightness() { //http://www.w3.org/TR/AERT#color-contrast var rgb = this.toRgb(); return (rgb.r * 299 + rgb.g * 587 + rgb.b * 114) / 1000; }, getLuminance: function getLuminance() { //http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef var rgb = this.toRgb(); var RsRGB, GsRGB, BsRGB, R, G, B; RsRGB = rgb.r / 255; GsRGB = rgb.g / 255; BsRGB = rgb.b / 255; if (RsRGB <= 0.03928) R = RsRGB / 12.92;else R = Math.pow((RsRGB + 0.055) / 1.055, 2.4); if (GsRGB <= 0.03928) G = GsRGB / 12.92;else G = Math.pow((GsRGB + 0.055) / 1.055, 2.4); if (BsRGB <= 0.03928) B = BsRGB / 12.92;else B = Math.pow((BsRGB + 0.055) / 1.055, 2.4); return 0.2126 * R + 0.7152 * G + 0.0722 * B; }, setAlpha: function setAlpha(value) { this._a = boundAlpha(value); this._roundA = Math.round(100 * this._a) / 100; return this; }, toHsv: function toHsv() { var hsv = rgbToHsv(this._r, this._g, this._b); return { h: hsv.h * 360, s: hsv.s, v: hsv.v, a: this._a }; }, toHsvString: function toHsvString() { var hsv = rgbToHsv(this._r, this._g, this._b); var h = Math.round(hsv.h * 360), s = Math.round(hsv.s * 100), v = Math.round(hsv.v * 100); return this._a == 1 ? "hsv(" + h + ", " + s + "%, " + v + "%)" : "hsva(" + h + ", " + s + "%, " + v + "%, " + this._roundA + ")"; }, toHsl: function toHsl() { var hsl = rgbToHsl(this._r, this._g, this._b); return { h: hsl.h * 360, s: hsl.s, l: hsl.l, a: this._a }; }, toHslString: function toHslString() { var hsl = rgbToHsl(this._r, this._g, this._b); var h = Math.round(hsl.h * 360), s = Math.round(hsl.s * 100), l = Math.round(hsl.l * 100); return this._a == 1 ? "hsl(" + h + ", " + s + "%, " + l + "%)" : "hsla(" + h + ", " + s + "%, " + l + "%, " + this._roundA + ")"; }, toHex: function toHex(allow3Char) { return rgbToHex(this._r, this._g, this._b, allow3Char); }, toHexString: function toHexString(allow3Char) { return "#" + this.toHex(allow3Char); }, toHex8: function toHex8(allow4Char) { return rgbaToHex(this._r, this._g, this._b, this._a, allow4Char); }, toHex8String: function toHex8String(allow4Char) { return "#" + this.toHex8(allow4Char); }, toRgb: function toRgb() { return { r: Math.round(this._r), g: Math.round(this._g), b: Math.round(this._b), a: this._a }; }, toRgbString: function toRgbString() { return this._a == 1 ? "rgb(" + Math.round(this._r) + ", " + Math.round(this._g) + ", " + Math.round(this._b) + ")" : "rgba(" + Math.round(this._r) + ", " + Math.round(this._g) + ", " + Math.round(this._b) + ", " + this._roundA + ")"; }, toPercentageRgb: function toPercentageRgb() { return { r: Math.round(bound01(this._r, 255) * 100) + "%", g: Math.round(bound01(this._g, 255) * 100) + "%", b: Math.round(bound01(this._b, 255) * 100) + "%", a: this._a }; }, toPercentageRgbString: function toPercentageRgbString() { return this._a == 1 ? "rgb(" + Math.round(bound01(this._r, 255) * 100) + "%, " + Math.round(bound01(this._g, 255) * 100) + "%, " + Math.round(bound01(this._b, 255) * 100) + "%)" : "rgba(" + Math.round(bound01(this._r, 255) * 100) + "%, " + Math.round(bound01(this._g, 255) * 100) + "%, " + Math.round(bound01(this._b, 255) * 100) + "%, " + this._roundA + ")"; }, toName: function toName() { if (this._a === 0) { return "transparent"; } if (this._a < 1) { return false; } return hexNames[rgbToHex(this._r, this._g, this._b, true)] || false; }, toFilter: function toFilter(secondColor) { var hex8String = "#" + rgbaToArgbHex(this._r, this._g, this._b, this._a); var secondHex8String = hex8String; var gradientType = this._gradientType ? "GradientType = 1, " : ""; if (secondColor) { var s = tinycolor(secondColor); secondHex8String = "#" + rgbaToArgbHex(s._r, s._g, s._b, s._a); } return "progid:DXImageTransform.Microsoft.gradient(" + gradientType + "startColorstr=" + hex8String + ",endColorstr=" + secondHex8String + ")"; }, toString: function toString(format) { var formatSet = !!format; format = format || this._format; var formattedString = false; var hasAlpha = this._a < 1 && this._a >= 0; var needsAlphaFormat = !formatSet && hasAlpha && (format === "hex" || format === "hex6" || format === "hex3" || format === "hex4" || format === "hex8" || format === "name"); if (needsAlphaFormat) { // Special case for "transparent", all other non-alpha formats // will return rgba when there is transparency. if (format === "name" && this._a === 0) { return this.toName(); } return this.toRgbString(); } if (format === "rgb") { formattedString = this.toRgbString(); } if (format === "prgb") { formattedString = this.toPercentageRgbString(); } if (format === "hex" || format === "hex6") { formattedString = this.toHexString(); } if (format === "hex3") { formattedString = this.toHexString(true); } if (format === "hex4") { formattedString = this.toHex8String(true); } if (format === "hex8") { formattedString = this.toHex8String(); } if (format === "name") { formattedString = this.toName(); } if (format === "hsl") { formattedString = this.toHslString(); } if (format === "hsv") { formattedString = this.toHsvString(); } return formattedString || this.toHexString(); }, clone: function clone() { return tinycolor(this.toString()); }, _applyModification: function _applyModification(fn, args) { var color = fn.apply(null, [this].concat([].slice.call(args))); this._r = color._r; this._g = color._g; this._b = color._b; this.setAlpha(color._a); return this; }, lighten: function lighten() { return this._applyModification(_lighten, arguments); }, brighten: function brighten() { return this._applyModification(_brighten, arguments); }, darken: function darken() { return this._applyModification(_darken, arguments); }, desaturate: function desaturate() { return this._applyModification(_desaturate, arguments); }, saturate: function saturate() { return this._applyModification(_saturate, arguments); }, greyscale: function greyscale() { return this._applyModification(_greyscale, arguments); }, spin: function spin() { return this._applyModification(_spin, arguments); }, _applyCombination: function _applyCombination(fn, args) { return fn.apply(null, [this].concat([].slice.call(args))); }, analogous: function analogous() { return this._applyCombination(_analogous, arguments); }, complement: function complement() { return this._applyCombination(_complement, arguments); }, monochromatic: function monochromatic() { return this._applyCombination(_monochromatic, arguments); }, splitcomplement: function splitcomplement() { return this._applyCombination(_splitcomplement, arguments); }, // Disabled until https://github.com/bgrins/TinyColor/issues/254 // polyad: function (number) { // return this._applyCombination(polyad, [number]); // }, triad: function triad() { return this._applyCombination(polyad, [3]); }, tetrad: function tetrad() { return this._applyCombination(polyad, [4]); } }; // If input is an object, force 1 into "1.0" to handle ratios properly // String input requires "1.0" as input, so 1 will be treated as 1 tinycolor.fromRatio = function (color, opts) { if (_typeof(color) == "object") { var newColor = {}; for (var i in color) { if (color.hasOwnProperty(i)) { if (i === "a") { newColor[i] = color[i]; } else { newColor[i] = convertToPercentage(color[i]); } } } color = newColor; } return tinycolor(color, opts); }; // Given a string or object, convert that input to RGB // Possible string inputs: // // "red" // "#f00" or "f00" // "#ff0000" or "ff0000" // "#ff000000" or "ff000000" // "rgb 255 0 0" or "rgb (255, 0, 0)" // "rgb 1.0 0 0" or "rgb (1, 0, 0)" // "rgba (255, 0, 0, 1)" or "rgba 255, 0, 0, 1" // "rgba (1.0, 0, 0, 1)" or "rgba 1.0, 0, 0, 1" // "hsl(0, 100%, 50%)" or "hsl 0 100% 50%" // "hsla(0, 100%, 50%, 1)" or "hsla 0 100% 50%, 1" // "hsv(0, 100%, 100%)" or "hsv 0 100% 100%" // function inputToRGB(color) { var rgb = { r: 0, g: 0, b: 0 }; var a = 1; var s = null; var v = null; var l = null; var ok = false; var format = false; if (typeof color == "string") { color = stringInputToObject(color); } if (_typeof(color) == "object") { if (isValidCSSUnit(color.r) && isValidCSSUnit(color.g) && isValidCSSUnit(color.b)) { rgb = rgbToRgb(color.r, color.g, color.b); ok = true; format = String(color.r).substr(-1) === "%" ? "prgb" : "rgb"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.v)) { s = convertToPercentage(color.s); v = convertToPercentage(color.v); rgb = hsvToRgb(color.h, s, v); ok = true; format = "hsv"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.l)) { s = convertToPercentage(color.s); l = convertToPercentage(color.l); rgb = hslToRgb(color.h, s, l); ok = true; format = "hsl"; } if (color.hasOwnProperty("a")) { a = color.a; } } a = boundAlpha(a); return { ok: ok, format: color.format || format, r: Math.min(255, Math.max(rgb.r, 0)), g: Math.min(255, Math.max(rgb.g, 0)), b: Math.min(255, Math.max(rgb.b, 0)), a: a }; } // Conversion Functions // -------------------- // `rgbToHsl`, `rgbToHsv`, `hslToRgb`, `hsvToRgb` modified from: // // `rgbToRgb` // Handle bounds / percentage checking to conform to CSS color spec // // *Assumes:* r, g, b in [0, 255] or [0, 1] // *Returns:* { r, g, b } in [0, 255] function rgbToRgb(r, g, b) { return { r: bound01(r, 255) * 255, g: bound01(g, 255) * 255, b: bound01(b, 255) * 255 }; } // `rgbToHsl` // Converts an RGB color value to HSL. // *Assumes:* r, g, and b are contained in [0, 255] or [0, 1] // *Returns:* { h, s, l } in [0,1] function rgbToHsl(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = Math.max(r, g, b), min = Math.min(r, g, b); var h, s, l = (max + min) / 2; if (max == min) { h = s = 0; // achromatic } else { var d = max - min; s = l > 0.5 ? d / (2 - max - min) : d / (max + min); switch (max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, l: l }; } // `hslToRgb` // Converts an HSL color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and l are contained [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hslToRgb(h, s, l) { var r, g, b; h = bound01(h, 360); s = bound01(s, 100); l = bound01(l, 100); function hue2rgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6; return p; } if (s === 0) { r = g = b = l; // achromatic } else { var q = l < 0.5 ? l * (1 + s) : l + s - l * s; var p = 2 * l - q; r = hue2rgb(p, q, h + 1 / 3); g = hue2rgb(p, q, h); b = hue2rgb(p, q, h - 1 / 3); } return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHsv` // Converts an RGB color value to HSV // *Assumes:* r, g, and b are contained in the set [0, 255] or [0, 1] // *Returns:* { h, s, v } in [0,1] function rgbToHsv(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = Math.max(r, g, b), min = Math.min(r, g, b); var h, s, v = max; var d = max - min; s = max === 0 ? 0 : d / max; if (max == min) { h = 0; // achromatic } else { switch (max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, v: v }; } // `hsvToRgb` // Converts an HSV color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and v are contained in [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hsvToRgb(h, s, v) { h = bound01(h, 360) * 6; s = bound01(s, 100); v = bound01(v, 100); var i = Math.floor(h), f = h - i, p = v * (1 - s), q = v * (1 - f * s), t = v * (1 - (1 - f) * s), mod = i % 6, r = [v, q, p, p, t, v][mod], g = [t, v, v, q, p, p][mod], b = [p, p, t, v, v, q][mod]; return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHex` // Converts an RGB color to hex // Assumes r, g, and b are contained in the set [0, 255] // Returns a 3 or 6 character hex function rgbToHex(r, g, b, allow3Char) { var hex = [pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16))]; // Return a 3 character hex if possible if (allow3Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0); } return hex.join(""); } // `rgbaToHex` // Converts an RGBA color plus alpha transparency to hex // Assumes r, g, b are contained in the set [0, 255] and // a in [0, 1]. Returns a 4 or 8 character rgba hex function rgbaToHex(r, g, b, a, allow4Char) { var hex = [pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16)), pad2(convertDecimalToHex(a))]; // Return a 4 character hex if possible if (allow4Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1) && hex[3].charAt(0) == hex[3].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0) + hex[3].charAt(0); } return hex.join(""); } // `rgbaToArgbHex` // Converts an RGBA color to an ARGB Hex8 string // Rarely used, but required for "toFilter()" function rgbaToArgbHex(r, g, b, a) { var hex = [pad2(convertDecimalToHex(a)), pad2(Math.round(r).toString(16)), pad2(Math.round(g).toString(16)), pad2(Math.round(b).toString(16))]; return hex.join(""); } // `equals` // Can be called with any tinycolor input tinycolor.equals = function (color1, color2) { if (!color1 || !color2) return false; return tinycolor(color1).toRgbString() == tinycolor(color2).toRgbString(); }; tinycolor.random = function () { return tinycolor.fromRatio({ r: Math.random(), g: Math.random(), b: Math.random() }); }; // Modification Functions // ---------------------- // Thanks to less.js for some of the basics here // function _desaturate(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.s -= amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function _saturate(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.s += amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function _greyscale(color) { return tinycolor(color).desaturate(100); } function _lighten(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.l += amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } function _brighten(color, amount) { amount = amount === 0 ? 0 : amount || 10; var rgb = tinycolor(color).toRgb(); rgb.r = Math.max(0, Math.min(255, rgb.r - Math.round(255 * -(amount / 100)))); rgb.g = Math.max(0, Math.min(255, rgb.g - Math.round(255 * -(amount / 100)))); rgb.b = Math.max(0, Math.min(255, rgb.b - Math.round(255 * -(amount / 100)))); return tinycolor(rgb); } function _darken(color, amount) { amount = amount === 0 ? 0 : amount || 10; var hsl = tinycolor(color).toHsl(); hsl.l -= amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } // Spin takes a positive or negative amount within [-360, 360] indicating the change of hue. // Values outside of this range will be wrapped into this range. function _spin(color, amount) { var hsl = tinycolor(color).toHsl(); var hue = (hsl.h + amount) % 360; hsl.h = hue < 0 ? 360 + hue : hue; return tinycolor(hsl); } // Combination Functions // --------------------- // Thanks to jQuery xColor for some of the ideas behind these // function _complement(color) { var hsl = tinycolor(color).toHsl(); hsl.h = (hsl.h + 180) % 360; return tinycolor(hsl); } function polyad(color, number) { if (isNaN(number) || number <= 0) { throw new Error("Argument to polyad must be a positive number"); } var hsl = tinycolor(color).toHsl(); var result = [tinycolor(color)]; var step = 360 / number; for (var i = 1; i < number; i++) { result.push(tinycolor({ h: (hsl.h + i * step) % 360, s: hsl.s, l: hsl.l })); } return result; } function _splitcomplement(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [tinycolor(color), tinycolor({ h: (h + 72) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 216) % 360, s: hsl.s, l: hsl.l })]; } function _analogous(color, results, slices) { results = results || 6; slices = slices || 30; var hsl = tinycolor(color).toHsl(); var part = 360 / slices; var ret = [tinycolor(color)]; for (hsl.h = (hsl.h - (part * results >> 1) + 720) % 360; --results;) { hsl.h = (hsl.h + part) % 360; ret.push(tinycolor(hsl)); } return ret; } function _monochromatic(color, results) { results = results || 6; var hsv = tinycolor(color).toHsv(); var h = hsv.h, s = hsv.s, v = hsv.v; var ret = []; var modification = 1 / results; while (results--) { ret.push(tinycolor({ h: h, s: s, v: v })); v = (v + modification) % 1; } return ret; } // Utility Functions // --------------------- tinycolor.mix = function (color1, color2, amount) { amount = amount === 0 ? 0 : amount || 50; var rgb1 = tinycolor(color1).toRgb(); var rgb2 = tinycolor(color2).toRgb(); var p = amount / 100; var rgba = { r: (rgb2.r - rgb1.r) * p + rgb1.r, g: (rgb2.g - rgb1.g) * p + rgb1.g, b: (rgb2.b - rgb1.b) * p + rgb1.b, a: (rgb2.a - rgb1.a) * p + rgb1.a }; return tinycolor(rgba); }; // Readability Functions // --------------------- // false // tinycolor.isReadable("#000", "#111",{level:"AA",size:"large"}) => false tinycolor.isReadable = function (color1, color2, wcag2) { var readability = tinycolor.readability(color1, color2); var wcag2Parms, out; out = false; wcag2Parms = validateWCAG2Parms(wcag2); switch (wcag2Parms.level + wcag2Parms.size) { case "AAsmall": case "AAAlarge": out = readability >= 4.5; break; case "AAlarge": out = readability >= 3; break; case "AAAsmall": out = readability >= 7; break; } return out; }; // `mostReadable` // Given a base color and a list of possible foreground or background // colors for that base, returns the most readable color. // Optionally returns Black or White if the most readable color is unreadable. // *Example* // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:false}).toHexString(); // "#112255" // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:true}).toHexString(); // "#ffffff" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"large"}).toHexString(); // "#faf3f3" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"small"}).toHexString(); // "#ffffff" tinycolor.mostReadable = function (baseColor, colorList, args) { var bestColor = null; var bestScore = 0; var readability; var includeFallbackColors, level, size; args = args || {}; includeFallbackColors = args.includeFallbackColors; level = args.level; size = args.size; for (var i = 0; i < colorList.length; i++) { readability = tinycolor.readability(baseColor, colorList[i]); if (readability > bestScore) { bestScore = readability; bestColor = tinycolor(colorList[i]); } } if (tinycolor.isReadable(baseColor, bestColor, { level: level, size: size }) || !includeFallbackColors) { return bestColor; } else { args.includeFallbackColors = false; return tinycolor.mostReadable(baseColor, ["#fff", "#000"], args); } }; // Big List of Colors // ------------------ // var names = tinycolor.names = { aliceblue: "f0f8ff", antiquewhite: "faebd7", aqua: "0ff", aquamarine: "7fffd4", azure: "f0ffff", beige: "f5f5dc", bisque: "ffe4c4", black: "000", blanchedalmond: "ffebcd", blue: "00f", blueviolet: "8a2be2", brown: "a52a2a", burlywood: "deb887", burntsienna: "ea7e5d", cadetblue: "5f9ea0", chartreuse: "7fff00", chocolate: "d2691e", coral: "ff7f50", cornflowerblue: "6495ed", cornsilk: "fff8dc", crimson: "dc143c", cyan: "0ff", darkblue: "00008b", darkcyan: "008b8b", darkgoldenrod: "b8860b", darkgray: "a9a9a9", darkgreen: "006400", darkgrey: "a9a9a9", darkkhaki: "bdb76b", darkmagenta: "8b008b", darkolivegreen: "556b2f", darkorange: "ff8c00", darkorchid: "9932cc", darkred: "8b0000", darksalmon: "e9967a", darkseagreen: "8fbc8f", darkslateblue: "483d8b", darkslategray: "2f4f4f", darkslategrey: "2f4f4f", darkturquoise: "00ced1", darkviolet: "9400d3", deeppink: "ff1493", deepskyblue: "00bfff", dimgray: "696969", dimgrey: "696969", dodgerblue: "1e90ff", firebrick: "b22222", floralwhite: "fffaf0", forestgreen: "228b22", fuchsia: "f0f", gainsboro: "dcdcdc", ghostwhite: "f8f8ff", gold: "ffd700", goldenrod: "daa520", gray: "808080", green: "008000", greenyellow: "adff2f", grey: "808080", honeydew: "f0fff0", hotpink: "ff69b4", indianred: "cd5c5c", indigo: "4b0082", ivory: "fffff0", khaki: "f0e68c", lavender: "e6e6fa", lavenderblush: "fff0f5", lawngreen: "7cfc00", lemonchiffon: "fffacd", lightblue: "add8e6", lightcoral: "f08080", lightcyan: "e0ffff", lightgoldenrodyellow: "fafad2", lightgray: "d3d3d3", lightgreen: "90ee90", lightgrey: "d3d3d3", lightpink: "ffb6c1", lightsalmon: "ffa07a", lightseagreen: "20b2aa", lightskyblue: "87cefa", lightslategray: "789", lightslategrey: "789", lightsteelblue: "b0c4de", lightyellow: "ffffe0", lime: "0f0", limegreen: "32cd32", linen: "faf0e6", magenta: "f0f", maroon: "800000", mediumaquamarine: "66cdaa", mediumblue: "0000cd", mediumorchid: "ba55d3", mediumpurple: "9370db", mediumseagreen: "3cb371", mediumslateblue: "7b68ee", mediumspringgreen: "00fa9a", mediumturquoise: "48d1cc", mediumvioletred: "c71585", midnightblue: "191970", mintcream: "f5fffa", mistyrose: "ffe4e1", moccasin: "ffe4b5", navajowhite: "ffdead", navy: "000080", oldlace: "fdf5e6", olive: "808000", olivedrab: "6b8e23", orange: "ffa500", orangered: "ff4500", orchid: "da70d6", palegoldenrod: "eee8aa", palegreen: "98fb98", paleturquoise: "afeeee", palevioletred: "db7093", papayawhip: "ffefd5", peachpuff: "ffdab9", peru: "cd853f", pink: "ffc0cb", plum: "dda0dd", powderblue: "b0e0e6", purple: "800080", rebeccapurple: "663399", red: "f00", rosybrown: "bc8f8f", royalblue: "4169e1", saddlebrown: "8b4513", salmon: "fa8072", sandybrown: "f4a460", seagreen: "2e8b57", seashell: "fff5ee", sienna: "a0522d", silver: "c0c0c0", skyblue: "87ceeb", slateblue: "6a5acd", slategray: "708090", slategrey: "708090", snow: "fffafa", springgreen: "00ff7f", steelblue: "4682b4", tan: "d2b48c", teal: "008080", thistle: "d8bfd8", tomato: "ff6347", turquoise: "40e0d0", violet: "ee82ee", wheat: "f5deb3", white: "fff", whitesmoke: "f5f5f5", yellow: "ff0", yellowgreen: "9acd32" }; // Make it easy to access colors via `hexNames[hex]` var hexNames = tinycolor.hexNames = flip(names); // Utilities // --------- // `{ 'name1': 'val1' }` becomes `{ 'val1': 'name1' }` function flip(o) { var flipped = {}; for (var i in o) { if (o.hasOwnProperty(i)) { flipped[o[i]] = i; } } return flipped; } // Return a valid alpha value [0,1] with all invalid values being set to 1 function boundAlpha(a) { a = parseFloat(a); if (isNaN(a) || a < 0 || a > 1) { a = 1; } return a; } // Take input from [0, n] and return it as [0, 1] function bound01(n, max) { if (isOnePointZero(n)) n = "100%"; var processPercent = isPercentage(n); n = Math.min(max, Math.max(0, parseFloat(n))); // Automatically convert percentage into number if (processPercent) { n = parseInt(n * max, 10) / 100; } // Handle floating point rounding errors if (Math.abs(n - max) < 0.000001) { return 1; } // Convert into [0, 1] range if it isn't already return n % max / parseFloat(max); } // Force a number between 0 and 1 function clamp01(val) { return Math.min(1, Math.max(0, val)); } // Parse a base-16 hex value into a base-10 integer function parseIntFromHex(val) { return parseInt(val, 16); } // Need to handle 1.0 as 100%, since once it is a number, there is no difference between it and 1 // function isOnePointZero(n) { return typeof n == "string" && n.indexOf(".") != -1 && parseFloat(n) === 1; } // Check to see if string passed in is a percentage function isPercentage(n) { return typeof n === "string" && n.indexOf("%") != -1; } // Force a hex value to have 2 characters function pad2(c) { return c.length == 1 ? "0" + c : "" + c; } // Replace a decimal with it's percentage value function convertToPercentage(n) { if (n <= 1) { n = n * 100 + "%"; } return n; } // Converts a decimal to a hex value function convertDecimalToHex(d) { return Math.round(parseFloat(d) * 255).toString(16); } // Converts a hex value to a decimal function convertHexToDecimal(h) { return parseIntFromHex(h) / 255; } var matchers = function () { // var CSS_INTEGER = "[-\\+]?\\d+%?"; // var CSS_NUMBER = "[-\\+]?\\d*\\.\\d+%?"; // Allow positive/negative integer/number. Don't capture the either/or, just the entire outcome. var CSS_UNIT = "(?:" + CSS_NUMBER + ")|(?:" + CSS_INTEGER + ")"; // Actual matching. // Parentheses and commas are optional, but not required. // Whitespace can take the place of commas or opening paren var PERMISSIVE_MATCH3 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; var PERMISSIVE_MATCH4 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; return { CSS_UNIT: new RegExp(CSS_UNIT), rgb: new RegExp("rgb" + PERMISSIVE_MATCH3), rgba: new RegExp("rgba" + PERMISSIVE_MATCH4), hsl: new RegExp("hsl" + PERMISSIVE_MATCH3), hsla: new RegExp("hsla" + PERMISSIVE_MATCH4), hsv: new RegExp("hsv" + PERMISSIVE_MATCH3), hsva: new RegExp("hsva" + PERMISSIVE_MATCH4), hex3: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex6: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/, hex4: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex8: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/ }; }(); // `isValidCSSUnit` // Take in a single string / number and check to see if it looks like a CSS unit // (see `matchers` above for definition). function isValidCSSUnit(color) { return !!matchers.CSS_UNIT.exec(color); } // `stringInputToObject` // Permissive string parsing. Take in a number of formats, and output an object // based on detected format. Returns `{ r, g, b }` or `{ h, s, l }` or `{ h, s, v}` function stringInputToObject(color) { color = color.replace(trimLeft, "").replace(trimRight, "").toLowerCase(); var named = false; if (names[color]) { color = names[color]; named = true; } else if (color == "transparent") { return { r: 0, g: 0, b: 0, a: 0, format: "name" }; } // Try to match string input using regular expressions. // Keep most of the number bounding out of this function - don't worry about [0,1] or [0,100] or [0,360] // Just return an object and let the conversion functions handle that. // This way the result will be the same whether the tinycolor is initialized with string or object. var match; if (match = matchers.rgb.exec(color)) { return { r: match[1], g: match[2], b: match[3] }; } if (match = matchers.rgba.exec(color)) { return { r: match[1], g: match[2], b: match[3], a: match[4] }; } if (match = matchers.hsl.exec(color)) { return { h: match[1], s: match[2], l: match[3] }; } if (match = matchers.hsla.exec(color)) { return { h: match[1], s: match[2], l: match[3], a: match[4] }; } if (match = matchers.hsv.exec(color)) { return { h: match[1], s: match[2], v: match[3] }; } if (match = matchers.hsva.exec(color)) { return { h: match[1], s: match[2], v: match[3], a: match[4] }; } if (match = matchers.hex8.exec(color)) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), a: convertHexToDecimal(match[4]), format: named ? "name" : "hex8" }; } if (match = matchers.hex6.exec(color)) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), format: named ? "name" : "hex" }; } if (match = matchers.hex4.exec(color)) { return { r: parseIntFromHex(match[1] + "" + match[1]), g: parseIntFromHex(match[2] + "" + match[2]), b: parseIntFromHex(match[3] + "" + match[3]), a: convertHexToDecimal(match[4] + "" + match[4]), format: named ? "name" : "hex8" }; } if (match = matchers.hex3.exec(color)) { return { r: parseIntFromHex(match[1] + "" + match[1]), g: parseIntFromHex(match[2] + "" + match[2]), b: parseIntFromHex(match[3] + "" + match[3]), format: named ? "name" : "hex" }; } return false; } function validateWCAG2Parms(parms) { // return valid WCAG2 parms for isReadable. // If input parms are invalid, return {"level":"AA", "size":"small"} var level, size; parms = parms || { level: "AA", size: "small" }; level = (parms.level || "AA").toUpperCase(); size = (parms.size || "small").toLowerCase(); if (level !== "AA" && level !== "AAA") { level = "AA"; } if (size !== "small" && size !== "large") { size = "small"; } return { level: level, size: size }; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey$1(descriptor.key), descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _toConsumableArray$1(arr) { return _arrayWithoutHoles$1(arr) || _iterableToArray$1(arr) || _unsupportedIterableToArray$1(arr) || _nonIterableSpread$1(); } function _arrayWithoutHoles$1(arr) { if (Array.isArray(arr)) return _arrayLikeToArray$1(arr); } function _iterableToArray$1(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray$1(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray$1(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray$1(o, minLen); } function _arrayLikeToArray$1(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread$1() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive$1(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey$1(arg) { var key = _toPrimitive$1(arg, "string"); return typeof key === "symbol" ? key : String(key); } var ENTROPY = 123; // Raise numbers to prevent collisions in lower indexes var int2HexColor = function int2HexColor(num) { return "#".concat(Math.min(num, Math.pow(2, 24)).toString(16).padStart(6, '0')); }; var rgb2Int = function rgb2Int(r, g, b) { return (r << 16) + (g << 8) + b; }; var colorStr2Int = function colorStr2Int(str) { var _tinyColor$toRgb = tinycolor(str).toRgb(), r = _tinyColor$toRgb.r, g = _tinyColor$toRgb.g, b = _tinyColor$toRgb.b; return rgb2Int(r, g, b); }; var checksum = function checksum(n, csBits) { return n * ENTROPY % Math.pow(2, csBits); }; var _default = /*#__PURE__*/function () { function _default() { var csBits = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : 6; _classCallCheck(this, _default); this.csBits = csBits; // How many bits to reserve for checksum. Will eat away into the usable size of the registry. this.registry = ['__reserved for background__']; // indexed objects for rgb lookup; } _createClass(_default, [{ key: "register", value: function register(obj) { if (this.registry.length >= Math.pow(2, 24 - this.csBits)) { // color has 24 bits (-checksum) return null; // Registry is full } var idx = this.registry.length; var cs = checksum(idx, this.csBits); var color = int2HexColor(idx + (cs << 24 - this.csBits)); this.registry.push(obj); return color; } }, { key: "lookup", value: function lookup(color) { var n = typeof color === 'string' ? colorStr2Int(color) : rgb2Int.apply(void 0, _toConsumableArray$1(color)); if (!n) return null; // 0 index is reserved for background var idx = n & Math.pow(2, 24 - this.csBits) - 1; // registry index var cs = n >> 24 - this.csBits & Math.pow(2, this.csBits) - 1; // extract bits reserved for checksum if (checksum(idx, this.csBits) !== cs || idx >= this.registry.length) return null; // failed checksum or registry out of bounds return this.registry[idx]; } }]); return _default; }(); function d3ForceCenter(x, y, z) { var nodes, strength = 1; if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force() { var i, n = nodes.length, node, sx = 0, sy = 0, sz = 0; for (i = 0; i < n; ++i) { node = nodes[i], sx += node.x || 0, sy += node.y || 0, sz += node.z || 0; } for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, sz = (sz / n - z) * strength, i = 0; i < n; ++i) { node = nodes[i]; if (sx) { node.x -= sx; } if (sy) { node.y -= sy; } if (sz) { node.z -= sz; } } } force.initialize = function(_) { nodes = _; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; force.strength = function(_) { return arguments.length ? (strength = +_, force) : strength; }; return force; } function tree_add$2(d) { const x = +this._x.call(null, d); return add$2(this.cover(x), x, d); } function add$2(tree, x, d) { if (isNaN(x)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, x1 = tree._x1, xm, xp, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (parent = node, !(node = node[i = +right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); if (x === xp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(2) : tree._root = new Array(2); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; } while ((i = +right) === (j = +(xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$2(data) { if (!Array.isArray(data)) data = Array.from(data); const n = data.length; const xz = new Float64Array(n); let x0 = Infinity, x1 = -Infinity; // Compute the points and their extent. for (let i = 0, x; i < n; ++i) { if (isNaN(x = +this._x.call(null, data[i]))) continue; xz[i] = x; if (x < x0) x0 = x; if (x > x1) x1 = x; } // If there were no (valid) points, abort. if (x0 > x1) return this; // Expand the tree to cover the new points. this.cover(x0).cover(x1); // Add the new points. for (let i = 0; i < n; ++i) { add$2(this, xz[i], data[i]); } return this; } function tree_cover$2(x) { if (isNaN(x = +x)) return this; // ignore invalid points var x0 = this._x0, x1 = this._x1; // If the binarytree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing half boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1) { i = +(x < x0); parent = new Array(2), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z; break; case 1: x0 = x1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._x1 = x1; return this; } function tree_data$2() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$2(_) { return arguments.length ? this.cover(+_[0][0]).cover(+_[1][0]) : isNaN(this._x0) ? undefined : [[this._x0], [this._x1]]; } function Half(node, x0, x1) { this.node = node; this.x0 = x0; this.x1 = x1; } function tree_find$2(x, radius) { var data, x0 = this._x0, x1, x2, x3 = this._x1, halves = [], node = this._root, q, i; if (node) halves.push(new Half(node, x0, x3)); if (radius == null) radius = Infinity; else { x0 = x - radius; x3 = x + radius; } while (q = halves.pop()) { // Stop searching if this half can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (x2 = q.x1) < x0) continue; // Bisect the current half. if (node.length) { var xm = (x1 + x2) / 2; halves.push( new Half(node[1], xm, x2), new Half(node[0], x1, xm) ); // Visit the closest half first. if (i = +(x >= xm)) { q = halves[halves.length - 1]; halves[halves.length - 1] = halves[halves.length - 1 - i]; halves[halves.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var d = Math.abs(x - +this._x.call(null, node.data)); if (d < radius) { radius = d; x0 = x - d; x3 = x + d; data = node.data; } } } return data; } function tree_remove$2(d) { if (isNaN(x = +this._x.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, x1 = this._x1, x, xm, right, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (!(parent = node, node = node[i = +right])) return this; if (!node.length) break; if (parent[(i + 1) & 1]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1]) && node === (parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$2(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$2() { return this._root; } function tree_size$2() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$2(callback) { var halves = [], q, node = this._root, child, x0, x1; if (node) halves.push(new Half(node, this._x0, this._x1)); while (q = halves.pop()) { if (!callback(node = q.node, x0 = q.x0, x1 = q.x1) && node.length) { var xm = (x0 + x1) / 2; if (child = node[1]) halves.push(new Half(child, xm, x1)); if (child = node[0]) halves.push(new Half(child, x0, xm)); } } return this; } function tree_visitAfter$2(callback) { var halves = [], next = [], q; if (this._root) halves.push(new Half(this._root, this._x0, this._x1)); while (q = halves.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, x1 = q.x1, xm = (x0 + x1) / 2; if (child = node[0]) halves.push(new Half(child, x0, xm)); if (child = node[1]) halves.push(new Half(child, xm, x1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.x1); } return this; } function defaultX$2(d) { return d[0]; } function tree_x$2(_) { return arguments.length ? (this._x = _, this) : this._x; } function binarytree(nodes, x) { var tree = new Binarytree(x == null ? defaultX$2 : x, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Binarytree(x, x0, x1) { this._x = x; this._x0 = x0; this._x1 = x1; this._root = undefined; } function leaf_copy$2(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$2 = binarytree.prototype = Binarytree.prototype; treeProto$2.copy = function() { var copy = new Binarytree(this._x, this._x0, this._x1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$2(node), copy; nodes = [{source: node, target: copy._root = new Array(2)}]; while (node = nodes.pop()) { for (var i = 0; i < 2; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(2)}); else node.target[i] = leaf_copy$2(child); } } } return copy; }; treeProto$2.add = tree_add$2; treeProto$2.addAll = addAll$2; treeProto$2.cover = tree_cover$2; treeProto$2.data = tree_data$2; treeProto$2.extent = tree_extent$2; treeProto$2.find = tree_find$2; treeProto$2.remove = tree_remove$2; treeProto$2.removeAll = removeAll$2; treeProto$2.root = tree_root$2; treeProto$2.size = tree_size$2; treeProto$2.visit = tree_visit$2; treeProto$2.visitAfter = tree_visitAfter$2; treeProto$2.x = tree_x$2; function tree_add$1(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d); return add$1(this.cover(x, y), x, y, d); } function add$1(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll$1(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1) return this; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add$1(this, xz[i], yz[i], data[i]); } return this; } function tree_cover$1(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1) { i = (y < y0) << 1 | (x < x0); parent = new Array(4), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z, y1 = y0 + z; break; case 1: x0 = x1 - z, y1 = y0 + z; break; case 2: x1 = x0 + z, y0 = y1 - z; break; case 3: x0 = x1 - z, y0 = y1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; } function tree_data$1() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent$1(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; } function Quad(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; } function tree_find$1(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; } function tree_remove$1(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll$1(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root$1() { return this._root; } function tree_size$1() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit$1(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; } function tree_visitAfter$1(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; } function defaultX$1(d) { return d[0]; } function tree_x$1(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY$1(d) { return d[1]; } function tree_y$1(_) { return arguments.length ? (this._y = _, this) : this._y; } function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX$1 : x, y == null ? defaultY$1 : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy$1(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto$1 = quadtree.prototype = Quadtree.prototype; treeProto$1.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy$1(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy$1(child); } } } return copy; }; treeProto$1.add = tree_add$1; treeProto$1.addAll = addAll$1; treeProto$1.cover = tree_cover$1; treeProto$1.data = tree_data$1; treeProto$1.extent = tree_extent$1; treeProto$1.find = tree_find$1; treeProto$1.remove = tree_remove$1; treeProto$1.removeAll = removeAll$1; treeProto$1.root = tree_root$1; treeProto$1.size = tree_size$1; treeProto$1.visit = tree_visit$1; treeProto$1.visitAfter = tree_visitAfter$1; treeProto$1.x = tree_x$1; treeProto$1.y = tree_y$1; function tree_add(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d), z = +this._z.call(null, d); return add(this.cover(x, y, z), x, y, z, d); } function add(tree, x, y, z, d) { if (isNaN(x) || isNaN(y) || isNaN(z)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, z0 = tree._z0, x1 = tree._x1, y1 = tree._y1, z1 = tree._z1, xm, ym, zm, xp, yp, zp, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (parent = node, !(node = node[i = deep << 2 | bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); zp = +tree._z.call(null, node.data); if (x === xp && y === yp && z === zp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(8) : tree._root = new Array(8); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; } while ((i = deep << 2 | bottom << 1 | right) === (j = (zp >= zm) << 2 | (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { if (!Array.isArray(data)) data = Array.from(data); const n = data.length; const xz = new Float64Array(n); const yz = new Float64Array(n); const zz = new Float64Array(n); let x0 = Infinity, y0 = Infinity, z0 = Infinity, x1 = -Infinity, y1 = -Infinity, z1 = -Infinity; // Compute the points and their extent. for (let i = 0, d, x, y, z; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) continue; xz[i] = x; yz[i] = y; zz[i] = z; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; if (z < z0) z0 = z; if (z > z1) z1 = z; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1 || z0 > z1) return this; // Expand the tree to cover the new points. this.cover(x0, y0, z0).cover(x1, y1, z1); // Add the new points. for (let i = 0; i < n; ++i) { add(this, xz[i], yz[i], zz[i], data[i]); } return this; } function tree_cover(x, y, z) { if (isNaN(x = +x) || isNaN(y = +y) || isNaN(z = +z)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1; // If the octree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing octant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; z1 = (z0 = Math.floor(z)) + 1; } // Otherwise, double repeatedly to cover. else { var t = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1 || z0 > z || z >= z1) { i = (z < z0) << 2 | (y < y0) << 1 | (x < x0); parent = new Array(8), parent[i] = node, node = parent, t *= 2; switch (i) { case 0: x1 = x0 + t, y1 = y0 + t, z1 = z0 + t; break; case 1: x0 = x1 - t, y1 = y0 + t, z1 = z0 + t; break; case 2: x1 = x0 + t, y0 = y1 - t, z1 = z0 + t; break; case 3: x0 = x1 - t, y0 = y1 - t, z1 = z0 + t; break; case 4: x1 = x0 + t, y1 = y0 + t, z0 = z1 - t; break; case 5: x0 = x1 - t, y1 = y0 + t, z0 = z1 - t; break; case 6: x1 = x0 + t, y0 = y1 - t, z0 = z1 - t; break; case 7: x0 = x1 - t, y0 = y1 - t, z0 = z1 - t; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; return this; } function tree_data() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1], +_[0][2]).cover(+_[1][0], +_[1][1], +_[1][2]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0, this._z0], [this._x1, this._y1, this._z1]]; } function Octant(node, x0, y0, z0, x1, y1, z1) { this.node = node; this.x0 = x0; this.y0 = y0; this.z0 = z0; this.x1 = x1; this.y1 = y1; this.z1 = z1; } function tree_find(x, y, z, radius) { var data, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1, y1, z1, x2, y2, z2, x3 = this._x1, y3 = this._y1, z3 = this._z1, octs = [], node = this._root, q, i; if (node) octs.push(new Octant(node, x0, y0, z0, x3, y3, z3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius, z0 = z - radius; x3 = x + radius, y3 = y + radius, z3 = z + radius; radius *= radius; } while (q = octs.pop()) { // Stop searching if this octant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (z1 = q.z0) > z3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0 || (z2 = q.z1) < z0) continue; // Bisect the current octant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2, zm = (z1 + z2) / 2; octs.push( new Octant(node[7], xm, ym, zm, x2, y2, z2), new Octant(node[6], x1, ym, zm, xm, y2, z2), new Octant(node[5], xm, y1, zm, x2, ym, z2), new Octant(node[4], x1, y1, zm, xm, ym, z2), new Octant(node[3], xm, ym, z1, x2, y2, zm), new Octant(node[2], x1, ym, z1, xm, y2, zm), new Octant(node[1], xm, y1, z1, x2, ym, zm), new Octant(node[0], x1, y1, z1, xm, ym, zm) ); // Visit the closest octant first. if (i = (z >= zm) << 2 | (y >= ym) << 1 | (x >= xm)) { q = octs[octs.length - 1]; octs[octs.length - 1] = octs[octs.length - 1 - i]; octs[octs.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), dz = z - +this._z.call(null, node.data), d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d, z0 = z - d; x3 = x + d, y3 = y + d, z3 = z + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d)) || isNaN(z = +this._z.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, z0 = this._z0, x1 = this._x1, y1 = this._y1, z1 = this._z1, x, y, z, xm, ym, zm, right, bottom, deep, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (deep = z >= (zm = (z0 + z1) / 2)) z0 = zm; else z1 = zm; if (!(parent = node, node = node[i = deep << 2 | bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 7] || parent[(i + 2) & 7] || parent[(i + 3) & 7] || parent[(i + 4) & 7] || parent[(i + 5) & 7] || parent[(i + 6) & 7] || parent[(i + 7) & 7]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3] || parent[4] || parent[5] || parent[6] || parent[7]) && node === (parent[7] || parent[6] || parent[5] || parent[4] || parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit(callback) { var octs = [], q, node = this._root, child, x0, y0, z0, x1, y1, z1; if (node) octs.push(new Octant(node, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); } } return this; } function tree_visitAfter(callback) { var octs = [], next = [], q; if (this._root) octs.push(new Octant(this._root, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1)); while (q = octs.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, z0 = q.z0, x1 = q.x1, y1 = q.y1, z1 = q.z1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2, zm = (z0 + z1) / 2; if (child = node[0]) octs.push(new Octant(child, x0, y0, z0, xm, ym, zm)); if (child = node[1]) octs.push(new Octant(child, xm, y0, z0, x1, ym, zm)); if (child = node[2]) octs.push(new Octant(child, x0, ym, z0, xm, y1, zm)); if (child = node[3]) octs.push(new Octant(child, xm, ym, z0, x1, y1, zm)); if (child = node[4]) octs.push(new Octant(child, x0, y0, zm, xm, ym, z1)); if (child = node[5]) octs.push(new Octant(child, xm, y0, zm, x1, ym, z1)); if (child = node[6]) octs.push(new Octant(child, x0, ym, zm, xm, y1, z1)); if (child = node[7]) octs.push(new Octant(child, xm, ym, zm, x1, y1, z1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.z0, q.x1, q.y1, q.z1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY(d) { return d[1]; } function tree_y(_) { return arguments.length ? (this._y = _, this) : this._y; } function defaultZ(d) { return d[2]; } function tree_z(_) { return arguments.length ? (this._z = _, this) : this._z; } function octree(nodes, x, y, z) { var tree = new Octree(x == null ? defaultX : x, y == null ? defaultY : y, z == null ? defaultZ : z, NaN, NaN, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Octree(x, y, z, x0, y0, z0, x1, y1, z1) { this._x = x; this._y = y; this._z = z; this._x0 = x0; this._y0 = y0; this._z0 = z0; this._x1 = x1; this._y1 = y1; this._z1 = z1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = octree.prototype = Octree.prototype; treeProto.copy = function() { var copy = new Octree(this._x, this._y, this._z, this._x0, this._y0, this._z0, this._x1, this._y1, this._z1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(8)}]; while (node = nodes.pop()) { for (var i = 0; i < 8; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(8)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; treeProto.z = tree_z; function constant(x) { return function() { return x; }; } function jiggle(random) { return (random() - 0.5) * 1e-6; } function index$1(d) { return d.index; } function find(nodeById, nodeId) { var node = nodeById.get(nodeId); if (!node) throw new Error("node not found: " + nodeId); return node; } function d3ForceLink(links) { var id = index$1, strength = defaultStrength, strengths, distance = constant(30), distances, nodes, nDim, count, bias, random, iterations = 1; if (links == null) links = []; function defaultStrength(link) { return 1 / Math.min(count[link.source.index], count[link.target.index]); } function force(alpha) { for (var k = 0, n = links.length; k < iterations; ++k) { for (var i = 0, link, source, target, x = 0, y = 0, z = 0, l, b; i < n; ++i) { link = links[i], source = link.source, target = link.target; x = target.x + target.vx - source.x - source.vx || jiggle(random); if (nDim > 1) { y = target.y + target.vy - source.y - source.vy || jiggle(random); } if (nDim > 2) { z = target.z + target.vz - source.z - source.vz || jiggle(random); } l = Math.sqrt(x * x + y * y + z * z); l = (l - distances[i]) / l * alpha * strengths[i]; x *= l, y *= l, z *= l; target.vx -= x * (b = bias[i]); if (nDim > 1) { target.vy -= y * b; } if (nDim > 2) { target.vz -= z * b; } source.vx += x * (b = 1 - b); if (nDim > 1) { source.vy += y * b; } if (nDim > 2) { source.vz += z * b; } } } } function initialize() { if (!nodes) return; var i, n = nodes.length, m = links.length, nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])), link; for (i = 0, count = new Array(n); i < m; ++i) { link = links[i], link.index = i; if (typeof link.source !== "object") link.source = find(nodeById, link.source); if (typeof link.target !== "object") link.target = find(nodeById, link.target); count[link.source.index] = (count[link.source.index] || 0) + 1; count[link.target.index] = (count[link.target.index] || 0) + 1; } for (i = 0, bias = new Array(m); i < m; ++i) { link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]); } strengths = new Array(m), initializeStrength(); distances = new Array(m), initializeDistance(); } function initializeStrength() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { strengths[i] = +strength(links[i], i, links); } } function initializeDistance() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { distances[i] = +distance(links[i], i, links); } } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.links = function(_) { return arguments.length ? (links = _, initialize(), force) : links; }; force.id = function(_) { return arguments.length ? (id = _, force) : id; }; force.iterations = function(_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initializeStrength(), force) : strength; }; force.distance = function(_) { return arguments.length ? (distance = typeof _ === "function" ? _ : constant(+_), initializeDistance(), force) : distance; }; return force; } // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a = 1664525; const c = 1013904223; const m = 4294967296; // 2^32 function lcg() { let s = 1; return () => (s = (a * s + c) % m) / m; } var MAX_DIMENSIONS = 3; function x(d) { return d.x; } function y(d) { return d.y; } function z(d) { return d.z; } var initialRadius = 10, initialAngleRoll = Math.PI * (3 - Math.sqrt(5)), // Golden ratio angle initialAngleYaw = Math.PI * 20 / (9 + Math.sqrt(221)); // Markov irrational number function d3ForceSimulation(nodes, numDimensions) { numDimensions = numDimensions || 2; var nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(numDimensions))), simulation, alpha = 1, alphaMin = 0.001, alphaDecay = 1 - Math.pow(alphaMin, 1 / 300), alphaTarget = 0, velocityDecay = 0.6, forces = new Map(), stepper = timer(step), event = dispatch("tick", "end"), random = lcg(); if (nodes == null) nodes = []; function step() { tick(); event.call("tick", simulation); if (alpha < alphaMin) { stepper.stop(); event.call("end", simulation); } } function tick(iterations) { var i, n = nodes.length, node; if (iterations === undefined) iterations = 1; for (var k = 0; k < iterations; ++k) { alpha += (alphaTarget - alpha) * alphaDecay; forces.forEach(function (force) { force(alpha); }); for (i = 0; i < n; ++i) { node = nodes[i]; if (node.fx == null) node.x += node.vx *= velocityDecay; else node.x = node.fx, node.vx = 0; if (nDim > 1) { if (node.fy == null) node.y += node.vy *= velocityDecay; else node.y = node.fy, node.vy = 0; } if (nDim > 2) { if (node.fz == null) node.z += node.vz *= velocityDecay; else node.z = node.fz, node.vz = 0; } } } return simulation; } function initializeNodes() { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.index = i; if (node.fx != null) node.x = node.fx; if (node.fy != null) node.y = node.fy; if (node.fz != null) node.z = node.fz; if (isNaN(node.x) || (nDim > 1 && isNaN(node.y)) || (nDim > 2 && isNaN(node.z))) { var radius = initialRadius * (nDim > 2 ? Math.cbrt(0.5 + i) : (nDim > 1 ? Math.sqrt(0.5 + i) : i)), rollAngle = i * initialAngleRoll, yawAngle = i * initialAngleYaw; if (nDim === 1) { node.x = radius; } else if (nDim === 2) { node.x = radius * Math.cos(rollAngle); node.y = radius * Math.sin(rollAngle); } else { // 3 dimensions: use spherical distribution along 2 irrational number angles node.x = radius * Math.sin(rollAngle) * Math.cos(yawAngle); node.y = radius * Math.cos(rollAngle); node.z = radius * Math.sin(rollAngle) * Math.sin(yawAngle); } } if (isNaN(node.vx) || (nDim > 1 && isNaN(node.vy)) || (nDim > 2 && isNaN(node.vz))) { node.vx = 0; if (nDim > 1) { node.vy = 0; } if (nDim > 2) { node.vz = 0; } } } } function initializeForce(force) { if (force.initialize) force.initialize(nodes, random, nDim); return force; } initializeNodes(); return simulation = { tick: tick, restart: function() { return stepper.restart(step), simulation; }, stop: function() { return stepper.stop(), simulation; }, numDimensions: function(_) { return arguments.length ? (nDim = Math.min(MAX_DIMENSIONS, Math.max(1, Math.round(_))), forces.forEach(initializeForce), simulation) : nDim; }, nodes: function(_) { return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes; }, alpha: function(_) { return arguments.length ? (alpha = +_, simulation) : alpha; }, alphaMin: function(_) { return arguments.length ? (alphaMin = +_, simulation) : alphaMin; }, alphaDecay: function(_) { return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay; }, alphaTarget: function(_) { return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget; }, velocityDecay: function(_) { return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay; }, randomSource: function(_) { return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random; }, force: function(name, _) { return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name); }, find: function() { var args = Array.prototype.slice.call(arguments); var x = args.shift() || 0, y = (nDim > 1 ? args.shift() : null) || 0, z = (nDim > 2 ? args.shift() : null) || 0, radius = args.shift() || Infinity; var i = 0, n = nodes.length, dx, dy, dz, d2, node, closest; radius *= radius; for (i = 0; i < n; ++i) { node = nodes[i]; dx = x - node.x; dy = y - (node.y || 0); dz = z - (node.z ||0); d2 = dx * dx + dy * dy + dz * dz; if (d2 < radius) closest = node, radius = d2; } return closest; }, on: function(name, _) { return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name); } }; } function d3ForceManyBody() { var nodes, nDim, node, random, alpha, strength = constant(-30), strengths, distanceMin2 = 1, distanceMax2 = Infinity, theta2 = 0.81; function force(_) { var i, n = nodes.length, tree = (nDim === 1 ? binarytree(nodes, x) :(nDim === 2 ? quadtree(nodes, x, y) :(nDim === 3 ? octree(nodes, x, y, z) :null ))).visitAfter(accumulate); for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply); } function initialize() { if (!nodes) return; var i, n = nodes.length, node; strengths = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes); } function accumulate(treeNode) { var strength = 0, q, c, weight = 0, x, y, z, i; var numChildren = treeNode.length; // For internal nodes, accumulate forces from children. if (numChildren) { for (x = y = z = i = 0; i < numChildren; ++i) { if ((q = treeNode[i]) && (c = Math.abs(q.value))) { strength += q.value, weight += c, x += c * (q.x || 0), y += c * (q.y || 0), z += c * (q.z || 0); } } strength *= Math.sqrt(4 / numChildren); // scale accumulated strength according to number of dimensions treeNode.x = x / weight; if (nDim > 1) { treeNode.y = y / weight; } if (nDim > 2) { treeNode.z = z / weight; } } // For leaf nodes, accumulate forces from coincident nodes. else { q = treeNode; q.x = q.data.x; if (nDim > 1) { q.y = q.data.y; } if (nDim > 2) { q.z = q.data.z; } do strength += strengths[q.data.index]; while (q = q.next); } treeNode.value = strength; } function apply(treeNode, x1, arg1, arg2, arg3) { if (!treeNode.value) return true; var x2 = [arg1, arg2, arg3][nDim-1]; var x = treeNode.x - node.x, y = (nDim > 1 ? treeNode.y - node.y : 0), z = (nDim > 2 ? treeNode.z - node.z : 0), w = x2 - x1, l = x * x + y * y + z * z; // Apply the Barnes-Hut approximation if possible. // Limit forces for very close nodes; randomize direction if coincident. if (w * w / theta2 < l) { if (l < distanceMax2) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); node.vx += x * treeNode.value * alpha / l; if (nDim > 1) { node.vy += y * treeNode.value * alpha / l; } if (nDim > 2) { node.vz += z * treeNode.value * alpha / l; } } return true; } // Otherwise, process points directly. else if (treeNode.length || l >= distanceMax2) return; // Limit forces for very close nodes; randomize direction if coincident. if (treeNode.data !== node || treeNode.next) { if (x === 0) x = jiggle(random), l += x * x; if (nDim > 1 && y === 0) y = jiggle(random), l += y * y; if (nDim > 2 && z === 0) z = jiggle(random), l += z * z; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); } do if (treeNode.data !== node) { w = strengths[treeNode.data.index] * alpha / l; node.vx += x * w; if (nDim > 1) { node.vy += y * w; } if (nDim > 2) { node.vz += z * w; } } while (treeNode = treeNode.next); } force.initialize = function(_nodes, ...args) { nodes = _nodes; random = args.find(arg => typeof arg === 'function') || Math.random; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.distanceMin = function(_) { return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2); }; force.distanceMax = function(_) { return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2); }; force.theta = function(_) { return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2); }; return force; } function d3ForceRadial(radius, x, y, z) { var nodes, nDim, strength = constant(0.1), strengths, radiuses; if (typeof radius !== "function") radius = constant(+radius); if (x == null) x = 0; if (y == null) y = 0; if (z == null) z = 0; function force(alpha) { for (var i = 0, n = nodes.length; i < n; ++i) { var node = nodes[i], dx = node.x - x || 1e-6, dy = (node.y || 0) - y || 1e-6, dz = (node.z || 0) - z || 1e-6, r = Math.sqrt(dx * dx + dy * dy + dz * dz), k = (radiuses[i] - r) * strengths[i] * alpha / r; node.vx += dx * k; if (nDim>1) { node.vy += dy * k; } if (nDim>2) { node.vz += dz * k; } } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); radiuses = new Array(n); for (i = 0; i < n; ++i) { radiuses[i] = +radius(nodes[i], i, nodes); strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(initNodes, ...args) { nodes = initNodes; nDim = args.find(arg => [1, 2, 3].includes(arg)) || 2; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant(+_), initialize(), force) : strength; }; force.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), initialize(), force) : radius; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.z = function(_) { return arguments.length ? (z = +_, force) : z; }; return force; } // math-inlining. const { abs: abs$1, cos: cos$1, sin: sin$1, acos: acos$1, atan2, sqrt: sqrt$1, pow } = Math; // cube root function yielding real roots function crt(v) { return v < 0 ? -pow(-v, 1 / 3) : pow(v, 1 / 3); } // trig constants const pi$1 = Math.PI, tau = 2 * pi$1, quart = pi$1 / 2, // float precision significant decimal epsilon = 0.000001, // extremas used in bbox calculation and similar algorithms nMax = Number.MAX_SAFE_INTEGER || 9007199254740991, nMin = Number.MIN_SAFE_INTEGER || -9007199254740991, // a zero coordinate, which is surprisingly useful ZERO = { x: 0, y: 0, z: 0 }; // Bezier utility functions const utils = { // Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x)) Tvalues: [ -0.0640568928626056260850430826247450385909, 0.0640568928626056260850430826247450385909, -0.1911188674736163091586398207570696318404, 0.1911188674736163091586398207570696318404, -0.3150426796961633743867932913198102407864, 0.3150426796961633743867932913198102407864, -0.4337935076260451384870842319133497124524, 0.4337935076260451384870842319133497124524, -0.5454214713888395356583756172183723700107, 0.5454214713888395356583756172183723700107, -0.6480936519369755692524957869107476266696, 0.6480936519369755692524957869107476266696, -0.7401241915785543642438281030999784255232, 0.7401241915785543642438281030999784255232, -0.8200019859739029219539498726697452080761, 0.8200019859739029219539498726697452080761, -0.8864155270044010342131543419821967550873, 0.8864155270044010342131543419821967550873, -0.9382745520027327585236490017087214496548, 0.9382745520027327585236490017087214496548, -0.9747285559713094981983919930081690617411, 0.9747285559713094981983919930081690617411, -0.9951872199970213601799974097007368118745, 0.9951872199970213601799974097007368118745, ], // Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article) Cvalues: [ 0.1279381953467521569740561652246953718517, 0.1279381953467521569740561652246953718517, 0.1258374563468282961213753825111836887264, 0.1258374563468282961213753825111836887264, 0.121670472927803391204463153476262425607, 0.121670472927803391204463153476262425607, 0.1155056680537256013533444839067835598622, 0.1155056680537256013533444839067835598622, 0.1074442701159656347825773424466062227946, 0.1074442701159656347825773424466062227946, 0.0976186521041138882698806644642471544279, 0.0976186521041138882698806644642471544279, 0.086190161531953275917185202983742667185, 0.086190161531953275917185202983742667185, 0.0733464814110803057340336152531165181193, 0.0733464814110803057340336152531165181193, 0.0592985849154367807463677585001085845412, 0.0592985849154367807463677585001085845412, 0.0442774388174198061686027482113382288593, 0.0442774388174198061686027482113382288593, 0.0285313886289336631813078159518782864491, 0.0285313886289336631813078159518782864491, 0.0123412297999871995468056670700372915759, 0.0123412297999871995468056670700372915759, ], arcfn: function (t, derivativeFn) { const d = derivativeFn(t); let l = d.x * d.x + d.y * d.y; if (typeof d.z !== "undefined") { l += d.z * d.z; } return sqrt$1(l); }, compute: function (t, points, _3d) { // shortcuts if (t === 0) { points[0].t = 0; return points[0]; } const order = points.length - 1; if (t === 1) { points[order].t = 1; return points[order]; } const mt = 1 - t; let p = points; // constant? if (order === 0) { points[0].t = t; return points[0]; } // linear? if (order === 1) { const ret = { x: mt * p[0].x + t * p[1].x, y: mt * p[0].y + t * p[1].y, t: t, }; if (_3d) { ret.z = mt * p[0].z + t * p[1].z; } return ret; } // quadratic/cubic curve? if (order < 4) { let mt2 = mt * mt, t2 = t * t, a, b, c, d = 0; if (order === 2) { p = [p[0], p[1], p[2], ZERO]; a = mt2; b = mt * t * 2; c = t2; } else if (order === 3) { a = mt2 * mt; b = mt2 * t * 3; c = mt * t2 * 3; d = t * t2; } const ret = { x: a * p[0].x + b * p[1].x + c * p[2].x + d * p[3].x, y: a * p[0].y + b * p[1].y + c * p[2].y + d * p[3].y, t: t, }; if (_3d) { ret.z = a * p[0].z + b * p[1].z + c * p[2].z + d * p[3].z; } return ret; } // higher order curves: use de Casteljau's computation const dCpts = JSON.parse(JSON.stringify(points)); while (dCpts.length > 1) { for (let i = 0; i < dCpts.length - 1; i++) { dCpts[i] = { x: dCpts[i].x + (dCpts[i + 1].x - dCpts[i].x) * t, y: dCpts[i].y + (dCpts[i + 1].y - dCpts[i].y) * t, }; if (typeof dCpts[i].z !== "undefined") { dCpts[i].z = dCpts[i].z + (dCpts[i + 1].z - dCpts[i].z) * t; } } dCpts.splice(dCpts.length - 1, 1); } dCpts[0].t = t; return dCpts[0]; }, computeWithRatios: function (t, points, ratios, _3d) { const mt = 1 - t, r = ratios, p = points; let f1 = r[0], f2 = r[1], f3 = r[2], f4 = r[3], d; // spec for linear f1 *= mt; f2 *= t; if (p.length === 2) { d = f1 + f2; return { x: (f1 * p[0].x + f2 * p[1].x) / d, y: (f1 * p[0].y + f2 * p[1].y) / d, z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z) / d, t: t, }; } // upgrade to quadratic f1 *= mt; f2 *= 2 * mt; f3 *= t * t; if (p.length === 3) { d = f1 + f2 + f3; return { x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x) / d, y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y) / d, z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z) / d, t: t, }; } // upgrade to cubic f1 *= mt; f2 *= 1.5 * mt; f3 *= 3 * mt; f4 *= t * t * t; if (p.length === 4) { d = f1 + f2 + f3 + f4; return { x: (f1 * p[0].x + f2 * p[1].x + f3 * p[2].x + f4 * p[3].x) / d, y: (f1 * p[0].y + f2 * p[1].y + f3 * p[2].y + f4 * p[3].y) / d, z: !_3d ? false : (f1 * p[0].z + f2 * p[1].z + f3 * p[2].z + f4 * p[3].z) / d, t: t, }; } }, derive: function (points, _3d) { const dpoints = []; for (let p = points, d = p.length, c = d - 1; d > 1; d--, c--) { const list = []; for (let j = 0, dpt; j < c; j++) { dpt = { x: c * (p[j + 1].x - p[j].x), y: c * (p[j + 1].y - p[j].y), }; if (_3d) { dpt.z = c * (p[j + 1].z - p[j].z); } list.push(dpt); } dpoints.push(list); p = list; } return dpoints; }, between: function (v, m, M) { return ( (m <= v && v <= M) || utils.approximately(v, m) || utils.approximately(v, M) ); }, approximately: function (a, b, precision) { return abs$1(a - b) <= (precision || epsilon); }, length: function (derivativeFn) { const z = 0.5, len = utils.Tvalues.length; let sum = 0; for (let i = 0, t; i < len; i++) { t = z * utils.Tvalues[i] + z; sum += utils.Cvalues[i] * utils.arcfn(t, derivativeFn); } return z * sum; }, map: function (v, ds, de, ts, te) { const d1 = de - ds, d2 = te - ts, v2 = v - ds, r = v2 / d1; return ts + d2 * r; }, lerp: function (r, v1, v2) { const ret = { x: v1.x + r * (v2.x - v1.x), y: v1.y + r * (v2.y - v1.y), }; if (v1.z !== undefined && v2.z !== undefined) { ret.z = v1.z + r * (v2.z - v1.z); } return ret; }, pointToString: function (p) { let s = p.x + "/" + p.y; if (typeof p.z !== "undefined") { s += "/" + p.z; } return s; }, pointsToString: function (points) { return "[" + points.map(utils.pointToString).join(", ") + "]"; }, copy: function (obj) { return JSON.parse(JSON.stringify(obj)); }, angle: function (o, v1, v2) { const dx1 = v1.x - o.x, dy1 = v1.y - o.y, dx2 = v2.x - o.x, dy2 = v2.y - o.y, cross = dx1 * dy2 - dy1 * dx2, dot = dx1 * dx2 + dy1 * dy2; return atan2(cross, dot); }, // round as string, to avoid rounding errors round: function (v, d) { const s = "" + v; const pos = s.indexOf("."); return parseFloat(s.substring(0, pos + 1 + d)); }, dist: function (p1, p2) { const dx = p1.x - p2.x, dy = p1.y - p2.y; return sqrt$1(dx * dx + dy * dy); }, closest: function (LUT, point) { let mdist = pow(2, 63), mpos, d; LUT.forEach(function (p, idx) { d = utils.dist(point, p); if (d < mdist) { mdist = d; mpos = idx; } }); return { mdist: mdist, mpos: mpos }; }, abcratio: function (t, n) { // see ratio(t) note on http://pomax.github.io/bezierinfo/#abc if (n !== 2 && n !== 3) { return false; } if (typeof t === "undefined") { t = 0.5; } else if (t === 0 || t === 1) { return t; } const bottom = pow(t, n) + pow(1 - t, n), top = bottom - 1; return abs$1(top / bottom); }, projectionratio: function (t, n) { // see u(t) note on http://pomax.github.io/bezierinfo/#abc if (n !== 2 && n !== 3) { return false; } if (typeof t === "undefined") { t = 0.5; } else if (t === 0 || t === 1) { return t; } const top = pow(1 - t, n), bottom = pow(t, n) + top; return top / bottom; }, lli8: function (x1, y1, x2, y2, x3, y3, x4, y4) { const nx = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4), ny = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4), d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); if (d == 0) { return false; } return { x: nx / d, y: ny / d }; }, lli4: function (p1, p2, p3, p4) { const x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y, x3 = p3.x, y3 = p3.y, x4 = p4.x, y4 = p4.y; return utils.lli8(x1, y1, x2, y2, x3, y3, x4, y4); }, lli: function (v1, v2) { return utils.lli4(v1, v1.c, v2, v2.c); }, makeline: function (p1, p2) { return new Bezier( p1.x, p1.y, (p1.x + p2.x) / 2, (p1.y + p2.y) / 2, p2.x, p2.y ); }, findbbox: function (sections) { let mx = nMax, my = nMax, MX = nMin, MY = nMin; sections.forEach(function (s) { const bbox = s.bbox(); if (mx > bbox.x.min) mx = bbox.x.min; if (my > bbox.y.min) my = bbox.y.min; if (MX < bbox.x.max) MX = bbox.x.max; if (MY < bbox.y.max) MY = bbox.y.max; }); return { x: { min: mx, mid: (mx + MX) / 2, max: MX, size: MX - mx }, y: { min: my, mid: (my + MY) / 2, max: MY, size: MY - my }, }; }, shapeintersections: function ( s1, bbox1, s2, bbox2, curveIntersectionThreshold ) { if (!utils.bboxoverlap(bbox1, bbox2)) return []; const intersections = []; const a1 = [s1.startcap, s1.forward, s1.back, s1.endcap]; const a2 = [s2.startcap, s2.forward, s2.back, s2.endcap]; a1.forEach(function (l1) { if (l1.virtual) return; a2.forEach(function (l2) { if (l2.virtual) return; const iss = l1.intersects(l2, curveIntersectionThreshold); if (iss.length > 0) { iss.c1 = l1; iss.c2 = l2; iss.s1 = s1; iss.s2 = s2; intersections.push(iss); } }); }); return intersections; }, makeshape: function (forward, back, curveIntersectionThreshold) { const bpl = back.points.length; const fpl = forward.points.length; const start = utils.makeline(back.points[bpl - 1], forward.points[0]); const end = utils.makeline(forward.points[fpl - 1], back.points[0]); const shape = { startcap: start, forward: forward, back: back, endcap: end, bbox: utils.findbbox([start, forward, back, end]), }; shape.intersections = function (s2) { return utils.shapeintersections( shape, shape.bbox, s2, s2.bbox, curveIntersectionThreshold ); }; return shape; }, getminmax: function (curve, d, list) { if (!list) return { min: 0, max: 0 }; let min = nMax, max = nMin, t, c; if (list.indexOf(0) === -1) { list = [0].concat(list); } if (list.indexOf(1) === -1) { list.push(1); } for (let i = 0, len = list.length; i < len; i++) { t = list[i]; c = curve.get(t); if (c[d] < min) { min = c[d]; } if (c[d] > max) { max = c[d]; } } return { min: min, mid: (min + max) / 2, max: max, size: max - min }; }, align: function (points, line) { const tx = line.p1.x, ty = line.p1.y, a = -atan2(line.p2.y - ty, line.p2.x - tx), d = function (v) { return { x: (v.x - tx) * cos$1(a) - (v.y - ty) * sin$1(a), y: (v.x - tx) * sin$1(a) + (v.y - ty) * cos$1(a), }; }; return points.map(d); }, roots: function (points, line) { line = line || { p1: { x: 0, y: 0 }, p2: { x: 1, y: 0 } }; const order = points.length - 1; const aligned = utils.align(points, line); const reduce = function (t) { return 0 <= t && t <= 1; }; if (order === 2) { const a = aligned[0].y, b = aligned[1].y, c = aligned[2].y, d = a - 2 * b + c; if (d !== 0) { const m1 = -sqrt$1(b * b - a * c), m2 = -a + b, v1 = -(m1 + m2) / d, v2 = -(-m1 + m2) / d; return [v1, v2].filter(reduce); } else if (b !== c && d === 0) { return [(2 * b - c) / (2 * b - 2 * c)].filter(reduce); } return []; } // see http://www.trans4mind.com/personal_development/mathematics/polynomials/cubicAlgebra.htm const pa = aligned[0].y, pb = aligned[1].y, pc = aligned[2].y, pd = aligned[3].y; let d = -pa + 3 * pb - 3 * pc + pd, a = 3 * pa - 6 * pb + 3 * pc, b = -3 * pa + 3 * pb, c = pa; if (utils.approximately(d, 0)) { // this is not a cubic curve. if (utils.approximately(a, 0)) { // in fact, this is not a quadratic curve either. if (utils.approximately(b, 0)) { // in fact in fact, there are no solutions. return []; } // linear solution: return [-c / b].filter(reduce); } // quadratic solution: const q = sqrt$1(b * b - 4 * a * c), a2 = 2 * a; return [(q - b) / a2, (-b - q) / a2].filter(reduce); } // at this point, we know we need a cubic solution: a /= d; b /= d; c /= d; const p = (3 * b - a * a) / 3, p3 = p / 3, q = (2 * a * a * a - 9 * a * b + 27 * c) / 27, q2 = q / 2, discriminant = q2 * q2 + p3 * p3 * p3; let u1, v1, x1, x2, x3; if (discriminant < 0) { const mp3 = -p / 3, mp33 = mp3 * mp3 * mp3, r = sqrt$1(mp33), t = -q / (2 * r), cosphi = t < -1 ? -1 : t > 1 ? 1 : t, phi = acos$1(cosphi), crtr = crt(r), t1 = 2 * crtr; x1 = t1 * cos$1(phi / 3) - a / 3; x2 = t1 * cos$1((phi + tau) / 3) - a / 3; x3 = t1 * cos$1((phi + 2 * tau) / 3) - a / 3; return [x1, x2, x3].filter(reduce); } else if (discriminant === 0) { u1 = q2 < 0 ? crt(-q2) : -crt(q2); x1 = 2 * u1 - a / 3; x2 = -u1 - a / 3; return [x1, x2].filter(reduce); } else { const sd = sqrt$1(discriminant); u1 = crt(-q2 + sd); v1 = crt(q2 + sd); return [u1 - v1 - a / 3].filter(reduce); } }, droots: function (p) { // quadratic roots are easy if (p.length === 3) { const a = p[0], b = p[1], c = p[2], d = a - 2 * b + c; if (d !== 0) { const m1 = -sqrt$1(b * b - a * c), m2 = -a + b, v1 = -(m1 + m2) / d, v2 = -(-m1 + m2) / d; return [v1, v2]; } else if (b !== c && d === 0) { return [(2 * b - c) / (2 * (b - c))]; } return []; } // linear roots are even easier if (p.length === 2) { const a = p[0], b = p[1]; if (a !== b) { return [a / (a - b)]; } return []; } return []; }, curvature: function (t, d1, d2, _3d, kOnly) { let num, dnm, adk, dk, k = 0, r = 0; // // We're using the following formula for curvature: // // x'y" - y'x" // k(t) = ------------------ // (x'² + y'²)^(3/2) // // from https://en.wikipedia.org/wiki/Radius_of_curvature#Definition // // With it corresponding 3D counterpart: // // sqrt( (y'z" - y"z')² + (z'x" - z"x')² + (x'y" - x"y')²) // k(t) = ------------------------------------------------------- // (x'² + y'² + z'²)^(3/2) // const d = utils.compute(t, d1); const dd = utils.compute(t, d2); const qdsum = d.x * d.x + d.y * d.y; if (_3d) { num = sqrt$1( pow(d.y * dd.z - dd.y * d.z, 2) + pow(d.z * dd.x - dd.z * d.x, 2) + pow(d.x * dd.y - dd.x * d.y, 2) ); dnm = pow(qdsum + d.z * d.z, 3 / 2); } else { num = d.x * dd.y - d.y * dd.x; dnm = pow(qdsum, 3 / 2); } if (num === 0 || dnm === 0) { return { k: 0, r: 0 }; } k = num / dnm; r = dnm / num; // We're also computing the derivative of kappa, because // there is value in knowing the rate of change for the // curvature along the curve. And we're just going to // ballpark it based on an epsilon. if (!kOnly) { // compute k'(t) based on the interval before, and after it, // to at least try to not introduce forward/backward pass bias. const pk = utils.curvature(t - 0.001, d1, d2, _3d, true).k; const nk = utils.curvature(t + 0.001, d1, d2, _3d, true).k; dk = (nk - k + (k - pk)) / 2; adk = (abs$1(nk - k) + abs$1(k - pk)) / 2; } return { k: k, r: r, dk: dk, adk: adk }; }, inflections: function (points) { if (points.length < 4) return []; // FIXME: TODO: add in inflection abstraction for quartic+ curves? const p = utils.align(points, { p1: points[0], p2: points.slice(-1)[0] }), a = p[2].x * p[1].y, b = p[3].x * p[1].y, c = p[1].x * p[2].y, d = p[3].x * p[2].y, v1 = 18 * (-3 * a + 2 * b + 3 * c - d), v2 = 18 * (3 * a - b - 3 * c), v3 = 18 * (c - a); if (utils.approximately(v1, 0)) { if (!utils.approximately(v2, 0)) { let t = -v3 / v2; if (0 <= t && t <= 1) return [t]; } return []; } const d2 = 2 * v1; if (utils.approximately(d2, 0)) return []; const trm = v2 * v2 - 4 * v1 * v3; if (trm < 0) return []; const sq = Math.sqrt(trm); return [(sq - v2) / d2, -(v2 + sq) / d2].filter(function (r) { return 0 <= r && r <= 1; }); }, bboxoverlap: function (b1, b2) { const dims = ["x", "y"], len = dims.length; for (let i = 0, dim, l, t, d; i < len; i++) { dim = dims[i]; l = b1[dim].mid; t = b2[dim].mid; d = (b1[dim].size + b2[dim].size) / 2; if (abs$1(l - t) >= d) return false; } return true; }, expandbox: function (bbox, _bbox) { if (_bbox.x.min < bbox.x.min) { bbox.x.min = _bbox.x.min; } if (_bbox.y.min < bbox.y.min) { bbox.y.min = _bbox.y.min; } if (_bbox.z && _bbox.z.min < bbox.z.min) { bbox.z.min = _bbox.z.min; } if (_bbox.x.max > bbox.x.max) { bbox.x.max = _bbox.x.max; } if (_bbox.y.max > bbox.y.max) { bbox.y.max = _bbox.y.max; } if (_bbox.z && _bbox.z.max > bbox.z.max) { bbox.z.max = _bbox.z.max; } bbox.x.mid = (bbox.x.min + bbox.x.max) / 2; bbox.y.mid = (bbox.y.min + bbox.y.max) / 2; if (bbox.z) { bbox.z.mid = (bbox.z.min + bbox.z.max) / 2; } bbox.x.size = bbox.x.max - bbox.x.min; bbox.y.size = bbox.y.max - bbox.y.min; if (bbox.z) { bbox.z.size = bbox.z.max - bbox.z.min; } }, pairiteration: function (c1, c2, curveIntersectionThreshold) { const c1b = c1.bbox(), c2b = c2.bbox(), r = 100000, threshold = curveIntersectionThreshold || 0.5; if ( c1b.x.size + c1b.y.size < threshold && c2b.x.size + c2b.y.size < threshold ) { return [ (((r * (c1._t1 + c1._t2)) / 2) | 0) / r + "/" + (((r * (c2._t1 + c2._t2)) / 2) | 0) / r, ]; } let cc1 = c1.split(0.5), cc2 = c2.split(0.5), pairs = [ { left: cc1.left, right: cc2.left }, { left: cc1.left, right: cc2.right }, { left: cc1.right, right: cc2.right }, { left: cc1.right, right: cc2.left }, ]; pairs = pairs.filter(function (pair) { return utils.bboxoverlap(pair.left.bbox(), pair.right.bbox()); }); let results = []; if (pairs.length === 0) return results; pairs.forEach(function (pair) { results = results.concat( utils.pairiteration(pair.left, pair.right, threshold) ); }); results = results.filter(function (v, i) { return results.indexOf(v) === i; }); return results; }, getccenter: function (p1, p2, p3) { const dx1 = p2.x - p1.x, dy1 = p2.y - p1.y, dx2 = p3.x - p2.x, dy2 = p3.y - p2.y, dx1p = dx1 * cos$1(quart) - dy1 * sin$1(quart), dy1p = dx1 * sin$1(quart) + dy1 * cos$1(quart), dx2p = dx2 * cos$1(quart) - dy2 * sin$1(quart), dy2p = dx2 * sin$1(quart) + dy2 * cos$1(quart), // chord midpoints mx1 = (p1.x + p2.x) / 2, my1 = (p1.y + p2.y) / 2, mx2 = (p2.x + p3.x) / 2, my2 = (p2.y + p3.y) / 2, // midpoint offsets mx1n = mx1 + dx1p, my1n = my1 + dy1p, mx2n = mx2 + dx2p, my2n = my2 + dy2p, // intersection of these lines: arc = utils.lli8(mx1, my1, mx1n, my1n, mx2, my2, mx2n, my2n), r = utils.dist(arc, p1); // arc start/end values, over mid point: let s = atan2(p1.y - arc.y, p1.x - arc.x), m = atan2(p2.y - arc.y, p2.x - arc.x), e = atan2(p3.y - arc.y, p3.x - arc.x), _; // determine arc direction (cw/ccw correction) if (s < e) { // if s m || m > e) { s += tau; } if (s > e) { _ = e; e = s; s = _; } } else { // if e 4) { if (arguments.length !== 1) { throw new Error( "Only new Bezier(point[]) is accepted for 4th and higher order curves" ); } higher = true; } } else { if (len !== 6 && len !== 8 && len !== 9 && len !== 12) { if (arguments.length !== 1) { throw new Error( "Only new Bezier(point[]) is accepted for 4th and higher order curves" ); } } } const _3d = (this._3d = (!higher && (len === 9 || len === 12)) || (coords && coords[0] && typeof coords[0].z !== "undefined")); const points = (this.points = []); for (let idx = 0, step = _3d ? 3 : 2; idx < len; idx += step) { var point = { x: args[idx], y: args[idx + 1], }; if (_3d) { point.z = args[idx + 2]; } points.push(point); } const order = (this.order = points.length - 1); const dims = (this.dims = ["x", "y"]); if (_3d) dims.push("z"); this.dimlen = dims.length; // is this curve, practically speaking, a straight line? const aligned = utils.align(points, { p1: points[0], p2: points[order] }); const baselength = utils.dist(points[0], points[order]); this._linear = aligned.reduce((t, p) => t + abs(p.y), 0) < baselength / 50; this._lut = []; this._t1 = 0; this._t2 = 1; this.update(); } static quadraticFromPoints(p1, p2, p3, t) { if (typeof t === "undefined") { t = 0.5; } // shortcuts, although they're really dumb if (t === 0) { return new Bezier(p2, p2, p3); } if (t === 1) { return new Bezier(p1, p2, p2); } // real fitting. const abc = Bezier.getABC(2, p1, p2, p3, t); return new Bezier(p1, abc.A, p3); } static cubicFromPoints(S, B, E, t, d1) { if (typeof t === "undefined") { t = 0.5; } const abc = Bezier.getABC(3, S, B, E, t); if (typeof d1 === "undefined") { d1 = utils.dist(B, abc.C); } const d2 = (d1 * (1 - t)) / t; const selen = utils.dist(S, E), lx = (E.x - S.x) / selen, ly = (E.y - S.y) / selen, bx1 = d1 * lx, by1 = d1 * ly, bx2 = d2 * lx, by2 = d2 * ly; // derivation of new hull coordinates const e1 = { x: B.x - bx1, y: B.y - by1 }, e2 = { x: B.x + bx2, y: B.y + by2 }, A = abc.A, v1 = { x: A.x + (e1.x - A.x) / (1 - t), y: A.y + (e1.y - A.y) / (1 - t) }, v2 = { x: A.x + (e2.x - A.x) / t, y: A.y + (e2.y - A.y) / t }, nc1 = { x: S.x + (v1.x - S.x) / t, y: S.y + (v1.y - S.y) / t }, nc2 = { x: E.x + (v2.x - E.x) / (1 - t), y: E.y + (v2.y - E.y) / (1 - t), }; // ...done return new Bezier(S, nc1, nc2, E); } static getUtils() { return utils; } getUtils() { return Bezier.getUtils(); } static get PolyBezier() { return PolyBezier; } valueOf() { return this.toString(); } toString() { return utils.pointsToString(this.points); } toSVG() { if (this._3d) return false; const p = this.points, x = p[0].x, y = p[0].y, s = ["M", x, y, this.order === 2 ? "Q" : "C"]; for (let i = 1, last = p.length; i < last; i++) { s.push(p[i].x); s.push(p[i].y); } return s.join(" "); } setRatios(ratios) { if (ratios.length !== this.points.length) { throw new Error("incorrect number of ratio values"); } this.ratios = ratios; this._lut = []; // invalidate any precomputed LUT } verify() { const print = this.coordDigest(); if (print !== this._print) { this._print = print; this.update(); } } coordDigest() { return this.points .map(function (c, pos) { return "" + pos + c.x + c.y + (c.z ? c.z : 0); }) .join(""); } update() { // invalidate any precomputed LUT this._lut = []; this.dpoints = utils.derive(this.points, this._3d); this.computedirection(); } computedirection() { const points = this.points; const angle = utils.angle(points[0], points[this.order], points[1]); this.clockwise = angle > 0; } length() { return utils.length(this.derivative.bind(this)); } static getABC(order = 2, S, B, E, t = 0.5) { const u = utils.projectionratio(t, order), um = 1 - u, C = { x: u * S.x + um * E.x, y: u * S.y + um * E.y, }, s = utils.abcratio(t, order), A = { x: B.x + (B.x - C.x) / s, y: B.y + (B.y - C.y) / s, }; return { A, B, C, S, E }; } getABC(t, B) { B = B || this.get(t); let S = this.points[0]; let E = this.points[this.order]; return Bezier.getABC(this.order, S, B, E, t); } getLUT(steps) { this.verify(); steps = steps || 100; if (this._lut.length === steps + 1) { return this._lut; } this._lut = []; // n steps means n+1 points steps++; this._lut = []; for (let i = 0, p, t; i < steps; i++) { t = i / (steps - 1); p = this.compute(t); p.t = t; this._lut.push(p); } return this._lut; } on(point, error) { error = error || 5; const lut = this.getLUT(), hits = []; for (let i = 0, c, t = 0; i < lut.length; i++) { c = lut[i]; if (utils.dist(c, point) < error) { hits.push(c); t += i / lut.length; } } if (!hits.length) return false; return (t /= hits.length); } project(point) { // step 1: coarse check const LUT = this.getLUT(), l = LUT.length - 1, closest = utils.closest(LUT, point), mpos = closest.mpos, t1 = (mpos - 1) / l, t2 = (mpos + 1) / l, step = 0.1 / l; // step 2: fine check let mdist = closest.mdist, t = t1, ft = t, p; mdist += 1; for (let d; t < t2 + step; t += step) { p = this.compute(t); d = utils.dist(point, p); if (d < mdist) { mdist = d; ft = t; } } ft = ft < 0 ? 0 : ft > 1 ? 1 : ft; p = this.compute(ft); p.t = ft; p.d = mdist; return p; } get(t) { return this.compute(t); } point(idx) { return this.points[idx]; } compute(t) { if (this.ratios) { return utils.computeWithRatios(t, this.points, this.ratios, this._3d); } return utils.compute(t, this.points, this._3d, this.ratios); } raise() { const p = this.points, np = [p[0]], k = p.length; for (let i = 1, pi, pim; i < k; i++) { pi = p[i]; pim = p[i - 1]; np[i] = { x: ((k - i) / k) * pi.x + (i / k) * pim.x, y: ((k - i) / k) * pi.y + (i / k) * pim.y, }; } np[k] = p[k - 1]; return new Bezier(np); } derivative(t) { return utils.compute(t, this.dpoints[0], this._3d); } dderivative(t) { return utils.compute(t, this.dpoints[1], this._3d); } align() { let p = this.points; return new Bezier(utils.align(p, { p1: p[0], p2: p[p.length - 1] })); } curvature(t) { return utils.curvature(t, this.dpoints[0], this.dpoints[1], this._3d); } inflections() { return utils.inflections(this.points); } normal(t) { return this._3d ? this.__normal3(t) : this.__normal2(t); } __normal2(t) { const d = this.derivative(t); const q = sqrt(d.x * d.x + d.y * d.y); return { t, x: -d.y / q, y: d.x / q }; } __normal3(t) { // see http://stackoverflow.com/questions/25453159 const r1 = this.derivative(t), r2 = this.derivative(t + 0.01), q1 = sqrt(r1.x * r1.x + r1.y * r1.y + r1.z * r1.z), q2 = sqrt(r2.x * r2.x + r2.y * r2.y + r2.z * r2.z); r1.x /= q1; r1.y /= q1; r1.z /= q1; r2.x /= q2; r2.y /= q2; r2.z /= q2; // cross product const c = { x: r2.y * r1.z - r2.z * r1.y, y: r2.z * r1.x - r2.x * r1.z, z: r2.x * r1.y - r2.y * r1.x, }; const m = sqrt(c.x * c.x + c.y * c.y + c.z * c.z); c.x /= m; c.y /= m; c.z /= m; // rotation matrix const R = [ c.x * c.x, c.x * c.y - c.z, c.x * c.z + c.y, c.x * c.y + c.z, c.y * c.y, c.y * c.z - c.x, c.x * c.z - c.y, c.y * c.z + c.x, c.z * c.z, ]; // normal vector: const n = { t, x: R[0] * r1.x + R[1] * r1.y + R[2] * r1.z, y: R[3] * r1.x + R[4] * r1.y + R[5] * r1.z, z: R[6] * r1.x + R[7] * r1.y + R[8] * r1.z, }; return n; } hull(t) { let p = this.points, _p = [], q = [], idx = 0; q[idx++] = p[0]; q[idx++] = p[1]; q[idx++] = p[2]; if (this.order === 3) { q[idx++] = p[3]; } // we lerp between all points at each iteration, until we have 1 point left. while (p.length > 1) { _p = []; for (let i = 0, pt, l = p.length - 1; i < l; i++) { pt = utils.lerp(t, p[i], p[i + 1]); q[idx++] = pt; _p.push(pt); } p = _p; } return q; } split(t1, t2) { // shortcuts if (t1 === 0 && !!t2) { return this.split(t2).left; } if (t2 === 1) { return this.split(t1).right; } // no shortcut: use "de Casteljau" iteration. const q = this.hull(t1); const result = { left: this.order === 2 ? new Bezier([q[0], q[3], q[5]]) : new Bezier([q[0], q[4], q[7], q[9]]), right: this.order === 2 ? new Bezier([q[5], q[4], q[2]]) : new Bezier([q[9], q[8], q[6], q[3]]), span: q, }; // make sure we bind _t1/_t2 information! result.left._t1 = utils.map(0, 0, 1, this._t1, this._t2); result.left._t2 = utils.map(t1, 0, 1, this._t1, this._t2); result.right._t1 = utils.map(t1, 0, 1, this._t1, this._t2); result.right._t2 = utils.map(1, 0, 1, this._t1, this._t2); // if we have no t2, we're done if (!t2) { return result; } // if we have a t2, split again: t2 = utils.map(t2, t1, 1, 0, 1); return result.right.split(t2).left; } extrema() { const result = {}; let roots = []; this.dims.forEach( function (dim) { let mfn = function (v) { return v[dim]; }; let p = this.dpoints[0].map(mfn); result[dim] = utils.droots(p); if (this.order === 3) { p = this.dpoints[1].map(mfn); result[dim] = result[dim].concat(utils.droots(p)); } result[dim] = result[dim].filter(function (t) { return t >= 0 && t <= 1; }); roots = roots.concat(result[dim].sort(utils.numberSort)); }.bind(this) ); result.values = roots.sort(utils.numberSort).filter(function (v, idx) { return roots.indexOf(v) === idx; }); return result; } bbox() { const extrema = this.extrema(), result = {}; this.dims.forEach( function (d) { result[d] = utils.getminmax(this, d, extrema[d]); }.bind(this) ); return result; } overlaps(curve) { const lbbox = this.bbox(), tbbox = curve.bbox(); return utils.bboxoverlap(lbbox, tbbox); } offset(t, d) { if (typeof d !== "undefined") { const c = this.get(t), n = this.normal(t); const ret = { c: c, n: n, x: c.x + n.x * d, y: c.y + n.y * d, }; if (this._3d) { ret.z = c.z + n.z * d; } return ret; } if (this._linear) { const nv = this.normal(0), coords = this.points.map(function (p) { const ret = { x: p.x + t * nv.x, y: p.y + t * nv.y, }; if (p.z && nv.z) { ret.z = p.z + t * nv.z; } return ret; }); return [new Bezier(coords)]; } return this.reduce().map(function (s) { if (s._linear) { return s.offset(t)[0]; } return s.scale(t); }); } simple() { if (this.order === 3) { const a1 = utils.angle(this.points[0], this.points[3], this.points[1]); const a2 = utils.angle(this.points[0], this.points[3], this.points[2]); if ((a1 > 0 && a2 < 0) || (a1 < 0 && a2 > 0)) return false; } const n1 = this.normal(0); const n2 = this.normal(1); let s = n1.x * n2.x + n1.y * n2.y; if (this._3d) { s += n1.z * n2.z; } return abs(acos(s)) < pi / 3; } reduce() { // TODO: examine these var types in more detail... let i, t1 = 0, t2 = 0, step = 0.01, segment, pass1 = [], pass2 = []; // first pass: split on extrema let extrema = this.extrema().values; if (extrema.indexOf(0) === -1) { extrema = [0].concat(extrema); } if (extrema.indexOf(1) === -1) { extrema.push(1); } for (t1 = extrema[0], i = 1; i < extrema.length; i++) { t2 = extrema[i]; segment = this.split(t1, t2); segment._t1 = t1; segment._t2 = t2; pass1.push(segment); t1 = t2; } // second pass: further reduce these segments to simple segments pass1.forEach(function (p1) { t1 = 0; t2 = 0; while (t2 <= 1) { for (t2 = t1 + step; t2 <= 1 + step; t2 += step) { segment = p1.split(t1, t2); if (!segment.simple()) { t2 -= step; if (abs(t1 - t2) < step) { // we can never form a reduction return []; } segment = p1.split(t1, t2); segment._t1 = utils.map(t1, 0, 1, p1._t1, p1._t2); segment._t2 = utils.map(t2, 0, 1, p1._t1, p1._t2); pass2.push(segment); t1 = t2; break; } } } if (t1 < 1) { segment = p1.split(t1, 1); segment._t1 = utils.map(t1, 0, 1, p1._t1, p1._t2); segment._t2 = p1._t2; pass2.push(segment); } }); return pass2; } translate(v, d1, d2) { d2 = typeof d2 === "number" ? d2 : d1; // TODO: make this take curves with control points outside // of the start-end interval into account const o = this.order; let d = this.points.map((_, i) => (1 - i / o) * d1 + (i / o) * d2); return new Bezier( this.points.map((p, i) => ({ x: p.x + v.x * d[i], y: p.y + v.y * d[i], })) ); } scale(d) { const order = this.order; let distanceFn = false; if (typeof d === "function") { distanceFn = d; } if (distanceFn && order === 2) { return this.raise().scale(distanceFn); } // TODO: add special handling for non-linear degenerate curves. const clockwise = this.clockwise; const points = this.points; if (this._linear) { return this.translate( this.normal(0), distanceFn ? distanceFn(0) : d, distanceFn ? distanceFn(1) : d ); } const r1 = distanceFn ? distanceFn(0) : d; const r2 = distanceFn ? distanceFn(1) : d; const v = [this.offset(0, 10), this.offset(1, 10)]; const np = []; const o = utils.lli4(v[0], v[0].c, v[1], v[1].c); if (!o) { throw new Error("cannot scale this curve. Try reducing it first."); } // move all points by distance 'd' wrt the origin 'o', // and move end points by fixed distance along normal. [0, 1].forEach(function (t) { const p = (np[t * order] = utils.copy(points[t * order])); p.x += (t ? r2 : r1) * v[t].n.x; p.y += (t ? r2 : r1) * v[t].n.y; }); if (!distanceFn) { // move control points to lie on the intersection of the offset // derivative vector, and the origin-through-control vector [0, 1].forEach((t) => { if (order === 2 && !!t) return; const p = np[t * order]; const d = this.derivative(t); const p2 = { x: p.x + d.x, y: p.y + d.y }; np[t + 1] = utils.lli4(p, p2, o, points[t + 1]); }); return new Bezier(np); } // move control points by "however much necessary to // ensure the correct tangent to endpoint". [0, 1].forEach(function (t) { if (order === 2 && !!t) return; var p = points[t + 1]; var ov = { x: p.x - o.x, y: p.y - o.y, }; var rc = distanceFn ? distanceFn((t + 1) / order) : d; if (distanceFn && !clockwise) rc = -rc; var m = sqrt(ov.x * ov.x + ov.y * ov.y); ov.x /= m; ov.y /= m; np[t + 1] = { x: p.x + rc * ov.x, y: p.y + rc * ov.y, }; }); return new Bezier(np); } outline(d1, d2, d3, d4) { d2 = d2 === undefined ? d1 : d2; if (this._linear) { // TODO: find the actual extrema, because they might // be before the start, or past the end. const n = this.normal(0); const start = this.points[0]; const end = this.points[this.points.length - 1]; let s, mid, e; if (d3 === undefined) { d3 = d1; d4 = d2; } s = { x: start.x + n.x * d1, y: start.y + n.y * d1 }; e = { x: end.x + n.x * d3, y: end.y + n.y * d3 }; mid = { x: (s.x + e.x) / 2, y: (s.y + e.y) / 2 }; const fline = [s, mid, e]; s = { x: start.x - n.x * d2, y: start.y - n.y * d2 }; e = { x: end.x - n.x * d4, y: end.y - n.y * d4 }; mid = { x: (s.x + e.x) / 2, y: (s.y + e.y) / 2 }; const bline = [e, mid, s]; const ls = utils.makeline(bline[2], fline[0]); const le = utils.makeline(fline[2], bline[0]); const segments = [ls, new Bezier(fline), le, new Bezier(bline)]; return new PolyBezier(segments); } const reduced = this.reduce(), len = reduced.length, fcurves = []; let bcurves = [], p, alen = 0, tlen = this.length(); const graduated = typeof d3 !== "undefined" && typeof d4 !== "undefined"; function linearDistanceFunction(s, e, tlen, alen, slen) { return function (v) { const f1 = alen / tlen, f2 = (alen + slen) / tlen, d = e - s; return utils.map(v, 0, 1, s + f1 * d, s + f2 * d); }; } // form curve oulines reduced.forEach(function (segment) { const slen = segment.length(); if (graduated) { fcurves.push( segment.scale(linearDistanceFunction(d1, d3, tlen, alen, slen)) ); bcurves.push( segment.scale(linearDistanceFunction(-d2, -d4, tlen, alen, slen)) ); } else { fcurves.push(segment.scale(d1)); bcurves.push(segment.scale(-d2)); } alen += slen; }); // reverse the "return" outline bcurves = bcurves .map(function (s) { p = s.points; if (p[3]) { s.points = [p[3], p[2], p[1], p[0]]; } else { s.points = [p[2], p[1], p[0]]; } return s; }) .reverse(); // form the endcaps as lines const fs = fcurves[0].points[0], fe = fcurves[len - 1].points[fcurves[len - 1].points.length - 1], bs = bcurves[len - 1].points[bcurves[len - 1].points.length - 1], be = bcurves[0].points[0], ls = utils.makeline(bs, fs), le = utils.makeline(fe, be), segments = [ls].concat(fcurves).concat([le]).concat(bcurves); return new PolyBezier(segments); } outlineshapes(d1, d2, curveIntersectionThreshold) { d2 = d2 || d1; const outline = this.outline(d1, d2).curves; const shapes = []; for (let i = 1, len = outline.length; i < len / 2; i++) { const shape = utils.makeshape( outline[i], outline[len - i], curveIntersectionThreshold ); shape.startcap.virtual = i > 1; shape.endcap.virtual = i < len / 2 - 1; shapes.push(shape); } return shapes; } intersects(curve, curveIntersectionThreshold) { if (!curve) return this.selfintersects(curveIntersectionThreshold); if (curve.p1 && curve.p2) { return this.lineIntersects(curve); } if (curve instanceof Bezier) { curve = curve.reduce(); } return this.curveintersects( this.reduce(), curve, curveIntersectionThreshold ); } lineIntersects(line) { const mx = min(line.p1.x, line.p2.x), my = min(line.p1.y, line.p2.y), MX = max(line.p1.x, line.p2.x), MY = max(line.p1.y, line.p2.y); return utils.roots(this.points, line).filter((t) => { var p = this.get(t); return utils.between(p.x, mx, MX) && utils.between(p.y, my, MY); }); } selfintersects(curveIntersectionThreshold) { // "simple" curves cannot intersect with their direct // neighbour, so for each segment X we check whether // it intersects [0:x-2][x+2:last]. const reduced = this.reduce(), len = reduced.length - 2, results = []; for (let i = 0, result, left, right; i < len; i++) { left = reduced.slice(i, i + 1); right = reduced.slice(i + 2); result = this.curveintersects(left, right, curveIntersectionThreshold); results.push(...result); } return results; } curveintersects(c1, c2, curveIntersectionThreshold) { const pairs = []; // step 1: pair off any overlapping segments c1.forEach(function (l) { c2.forEach(function (r) { if (l.overlaps(r)) { pairs.push({ left: l, right: r }); } }); }); // step 2: for each pairing, run through the convergence algorithm. let intersections = []; pairs.forEach(function (pair) { const result = utils.pairiteration( pair.left, pair.right, curveIntersectionThreshold ); if (result.length > 0) { intersections = intersections.concat(result); } }); return intersections; } arcs(errorThreshold) { errorThreshold = errorThreshold || 0.5; return this._iterate(errorThreshold, []); } _error(pc, np1, s, e) { const q = (e - s) / 4, c1 = this.get(s + q), c2 = this.get(e - q), ref = utils.dist(pc, np1), d1 = utils.dist(pc, c1), d2 = utils.dist(pc, c2); return abs(d1 - ref) + abs(d2 - ref); } _iterate(errorThreshold, circles) { let t_s = 0, t_e = 1, safety; // we do a binary search to find the "good `t` closest to no-longer-good" do { safety = 0; // step 1: start with the maximum possible arc t_e = 1; // points: let np1 = this.get(t_s), np2, np3, arc, prev_arc; // booleans: let curr_good = false, prev_good = false, done; // numbers: let t_m = t_e, prev_e = 1; // step 2: find the best possible arc do { prev_good = curr_good; prev_arc = arc; t_m = (t_s + t_e) / 2; np2 = this.get(t_m); np3 = this.get(t_e); arc = utils.getccenter(np1, np2, np3); //also save the t values arc.interval = { start: t_s, end: t_e, }; let error = this._error(arc, np1, t_s, t_e); curr_good = error <= errorThreshold; done = prev_good && !curr_good; if (!done) prev_e = t_e; // this arc is fine: we can move 'e' up to see if we can find a wider arc if (curr_good) { // if e is already at max, then we're done for this arc. if (t_e >= 1) { // make sure we cap at t=1 arc.interval.end = prev_e = 1; prev_arc = arc; // if we capped the arc segment to t=1 we also need to make sure that // the arc's end angle is correct with respect to the bezier end point. if (t_e > 1) { let d = { x: arc.x + arc.r * cos(arc.e), y: arc.y + arc.r * sin(arc.e), }; arc.e += utils.angle({ x: arc.x, y: arc.y }, d, this.get(1)); } break; } // if not, move it up by half the iteration distance t_e = t_e + (t_e - t_s) / 2; } else { // this is a bad arc: we need to move 'e' down to find a good arc t_e = t_m; } } while (!done && safety++ < 100); if (safety >= 100) { break; } // console.log("L835: [F] arc found", t_s, prev_e, prev_arc.x, prev_arc.y, prev_arc.s, prev_arc.e); prev_arc = prev_arc ? prev_arc : arc; circles.push(prev_arc); t_s = prev_e; } while (t_e < 1); return circles; } } function _iterableToArrayLimit(arr, i) { var _i = null == arr ? null : "undefined" != typeof Symbol && arr[Symbol.iterator] || arr["@@iterator"]; if (null != _i) { var _s, _e, _x, _r, _arr = [], _n = !0, _d = !1; try { if (_x = (_i = _i.call(arr)).next, 0 === i) { if (Object(_i) !== _i) return; _n = !1; } else for (; !(_n = (_s = _x.call(_i)).done) && (_arr.push(_s.value), _arr.length !== i); _n = !0); } catch (err) { _d = !0, _e = err; } finally { try { if (!_n && null != _i.return && (_r = _i.return(), Object(_r) !== _r)) return; } finally { if (_d) throw _e; } } return _arr; } } function _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; } function _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; } function _slicedToArray(arr, i) { return _arrayWithHoles(arr) || _iterableToArrayLimit(arr, i) || _unsupportedIterableToArray(arr, i) || _nonIterableRest(); } function _toConsumableArray(arr) { return _arrayWithoutHoles(arr) || _iterableToArray(arr) || _unsupportedIterableToArray(arr) || _nonIterableSpread(); } function _arrayWithoutHoles(arr) { if (Array.isArray(arr)) return _arrayLikeToArray(arr); } function _arrayWithHoles(arr) { if (Array.isArray(arr)) return arr; } function _iterableToArray(iter) { if (typeof Symbol !== "undefined" && iter[Symbol.iterator] != null || iter["@@iterator"] != null) return Array.from(iter); } function _unsupportedIterableToArray(o, minLen) { if (!o) return; if (typeof o === "string") return _arrayLikeToArray(o, minLen); var n = Object.prototype.toString.call(o).slice(8, -1); if (n === "Object" && o.constructor) n = o.constructor.name; if (n === "Map" || n === "Set") return Array.from(o); if (n === "Arguments" || /^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n)) return _arrayLikeToArray(o, minLen); } function _arrayLikeToArray(arr, len) { if (len == null || len > arr.length) len = arr.length; for (var i = 0, arr2 = new Array(len); i < len; i++) arr2[i] = arr[i]; return arr2; } function _nonIterableSpread() { throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _nonIterableRest() { throw new TypeError("Invalid attempt to destructure non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method."); } function _toPrimitive(input, hint) { if (typeof input !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (typeof res !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); } function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return typeof key === "symbol" ? key : String(key); } var index = (function () { var list = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : []; var keyAccessors = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var multiItem = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : true; var flattenKeys = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : false; var keys = (keyAccessors instanceof Array ? keyAccessors.length ? keyAccessors : [undefined] : [keyAccessors]).map(function (key) { return { keyAccessor: key, isProp: !(key instanceof Function) }; }); var indexedResult = list.reduce(function (res, item) { var iterObj = res; var itemVal = item; keys.forEach(function (_ref, idx) { var keyAccessor = _ref.keyAccessor, isProp = _ref.isProp; var key; if (isProp) { var _itemVal = itemVal, propVal = _itemVal[keyAccessor], rest = _objectWithoutProperties(_itemVal, [keyAccessor].map(_toPropertyKey)); key = propVal; itemVal = rest; } else { key = keyAccessor(itemVal, idx); } if (idx + 1 < keys.length) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = {}; } iterObj = iterObj[key]; } else { // Leaf key if (multiItem) { if (!iterObj.hasOwnProperty(key)) { iterObj[key] = []; } iterObj[key].push(itemVal); } else { iterObj[key] = itemVal; } } }); return res; }, {}); if (multiItem instanceof Function) { // Reduce leaf multiple values (function reduce(node) { var level = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 1; if (level === keys.length) { Object.keys(node).forEach(function (k) { return node[k] = multiItem(node[k]); }); } else { Object.values(node).forEach(function (child) { return reduce(child, level + 1); }); } })(indexedResult); // IIFE } var result = indexedResult; if (flattenKeys) { // flatten into array result = []; (function flatten(node) { var accKeys = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; if (accKeys.length === keys.length) { result.push({ keys: accKeys, vals: node }); } else { Object.entries(node).forEach(function (_ref2) { var _ref3 = _slicedToArray(_ref2, 2), key = _ref3[0], val = _ref3[1]; return flatten(val, [].concat(_toConsumableArray(accKeys), [key])); }); } })(indexedResult); //IIFE if (keyAccessors instanceof Array && keyAccessors.length === 0 && result.length === 1) { // clear keys if there's no key accessors (single result) result[0].keys = []; } } return result; }); function initRange(domain, range) { switch (arguments.length) { case 0: break; case 1: this.range(domain); break; default: this.range(range).domain(domain); break; } return this; } const implicit = Symbol("implicit"); function ordinal() { var index = new InternMap(), domain = [], range = [], unknown = implicit; function scale(d) { let i = index.get(d); if (i === undefined) { if (unknown !== implicit) return unknown; index.set(d, i = domain.push(d) - 1); } return range[i % range.length]; } scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = [], index = new InternMap(); for (const value of _) { if (index.has(value)) continue; index.set(value, domain.push(value) - 1); } return scale; }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), scale) : range.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return ordinal(domain, range).unknown(unknown); }; initRange.apply(scale, arguments); return scale; } function colors(specifier) { var n = specifier.length / 6 | 0, colors = new Array(n), i = 0; while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6); return colors; } var schemePaired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928"); var autoColorScale = ordinal(schemePaired); // Autoset attribute colorField by colorByAccessor property // If an object has already a color, don't set it // Objects can be nodes or links function autoColorObjects(objects, colorByAccessor, colorField) { if (!colorByAccessor || typeof colorField !== 'string') return; objects.filter(function (obj) { return !obj[colorField]; }).forEach(function (obj) { obj[colorField] = autoColorScale(colorByAccessor(obj)); }); } function getDagDepths (_ref, idAccessor) { var nodes = _ref.nodes, links = _ref.links; var _ref2 = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}, _ref2$nodeFilter = _ref2.nodeFilter, nodeFilter = _ref2$nodeFilter === void 0 ? function () { return true; } : _ref2$nodeFilter, _ref2$onLoopError = _ref2.onLoopError, onLoopError = _ref2$onLoopError === void 0 ? function (loopIds) { throw "Invalid DAG structure! Found cycle in node path: ".concat(loopIds.join(' -> '), "."); } : _ref2$onLoopError; // linked graph var graph = {}; nodes.forEach(function (node) { return graph[idAccessor(node)] = { data: node, out: [], depth: -1, skip: !nodeFilter(node) }; }); links.forEach(function (_ref3) { var source = _ref3.source, target = _ref3.target; var sourceId = getNodeId(source); var targetId = getNodeId(target); if (!graph.hasOwnProperty(sourceId)) throw "Missing source node with id: ".concat(sourceId); if (!graph.hasOwnProperty(targetId)) throw "Missing target node with id: ".concat(targetId); var sourceNode = graph[sourceId]; var targetNode = graph[targetId]; sourceNode.out.push(targetNode); function getNodeId(node) { return _typeof$1(node) === 'object' ? idAccessor(node) : node; } }); var foundLoops = []; traverse(Object.values(graph)); var nodeDepths = Object.assign.apply(Object, [{}].concat(_toConsumableArray$2(Object.entries(graph).filter(function (_ref4) { var _ref5 = _slicedToArray$2(_ref4, 2), node = _ref5[1]; return !node.skip; }).map(function (_ref6) { var _ref7 = _slicedToArray$2(_ref6, 2), id = _ref7[0], node = _ref7[1]; return _defineProperty({}, id, node.depth); })))); return nodeDepths; function traverse(nodes) { var nodeStack = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : []; var currentDepth = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0; var _loop = function _loop() { var node = nodes[i]; if (nodeStack.indexOf(node) !== -1) { var loop = [].concat(_toConsumableArray$2(nodeStack.slice(nodeStack.indexOf(node))), [node]).map(function (d) { return idAccessor(d.data); }); if (!foundLoops.some(function (foundLoop) { return foundLoop.length === loop.length && foundLoop.every(function (id, idx) { return id === loop[idx]; }); })) { foundLoops.push(loop); onLoopError(loop); } return 1; // continue } if (currentDepth > node.depth) { // Don't unnecessarily revisit chunks of the graph node.depth = currentDepth; traverse(node.out, [].concat(_toConsumableArray$2(nodeStack), [node]), currentDepth + (node.skip ? 0 : 1)); } }; for (var i = 0, l = nodes.length; i < l; i++) { if (_loop()) continue; } } } // var DAG_LEVEL_NODE_RATIO = 2; // whenever styling props are changed that require a canvas redraw var notifyRedraw = function notifyRedraw(_, state) { return state.onNeedsRedraw && state.onNeedsRedraw(); }; var updDataPhotons = function updDataPhotons(_, state) { if (!state.isShadow) { // Add photon particles var linkParticlesAccessor = index$2(state.linkDirectionalParticles); state.graphData.links.forEach(function (link) { var numPhotons = Math.round(Math.abs(linkParticlesAccessor(link))); if (numPhotons) { link.__photons = _toConsumableArray$2(Array(numPhotons)).map(function () { return {}; }); } else { delete link.__photons; } }); } }; var CanvasForceGraph = index$3({ props: { graphData: { "default": { nodes: [], links: [] }, onChange: function onChange(_, state) { state.engineRunning = false; // Pause simulation updDataPhotons(_, state); } }, dagMode: { onChange: function onChange(dagMode, state) { // td, bu, lr, rl, radialin, radialout !dagMode && (state.graphData.nodes || []).forEach(function (n) { return n.fx = n.fy = undefined; }); // unfix nodes when disabling dag mode } }, dagLevelDistance: {}, dagNodeFilter: { "default": function _default(node) { return true; } }, onDagError: { triggerUpdate: false }, nodeRelSize: { "default": 4, triggerUpdate: false, onChange: notifyRedraw }, // area per val unit nodeId: { "default": 'id' }, nodeVal: { "default": 'val', triggerUpdate: false, onChange: notifyRedraw }, nodeColor: { "default": 'color', triggerUpdate: false, onChange: notifyRedraw }, nodeAutoColorBy: {}, nodeCanvasObject: { triggerUpdate: false, onChange: notifyRedraw }, nodeCanvasObjectMode: { "default": function _default() { return 'replace'; }, triggerUpdate: false, onChange: notifyRedraw }, nodeVisibility: { "default": true, triggerUpdate: false, onChange: notifyRedraw }, linkSource: { "default": 'source' }, linkTarget: { "default": 'target' }, linkVisibility: { "default": true, triggerUpdate: false, onChange: notifyRedraw }, linkColor: { "default": 'color', triggerUpdate: false, onChange: notifyRedraw }, linkAutoColorBy: {}, linkLineDash: { triggerUpdate: false, onChange: notifyRedraw }, linkWidth: { "default": 1, triggerUpdate: false, onChange: notifyRedraw }, linkCurvature: { "default": 0, triggerUpdate: false, onChange: notifyRedraw }, linkCanvasObject: { triggerUpdate: false, onChange: notifyRedraw }, linkCanvasObjectMode: { "default": function _default() { return 'replace'; }, triggerUpdate: false, onChange: notifyRedraw }, linkDirectionalArrowLength: { "default": 0, triggerUpdate: false, onChange: notifyRedraw }, linkDirectionalArrowColor: { triggerUpdate: false, onChange: notifyRedraw }, linkDirectionalArrowRelPos: { "default": 0.5, triggerUpdate: false, onChange: notifyRedraw }, // value between 0<>1 indicating the relative pos along the (exposed) line linkDirectionalParticles: { "default": 0, triggerUpdate: false, onChange: updDataPhotons }, // animate photons travelling in the link direction linkDirectionalParticleSpeed: { "default": 0.01, triggerUpdate: false }, // in link length ratio per frame linkDirectionalParticleWidth: { "default": 4, triggerUpdate: false }, linkDirectionalParticleColor: { triggerUpdate: false }, globalScale: { "default": 1, triggerUpdate: false }, d3AlphaMin: { "default": 0, triggerUpdate: false }, d3AlphaDecay: { "default": 0.0228, triggerUpdate: false, onChange: function onChange(alphaDecay, state) { state.forceLayout.alphaDecay(alphaDecay); } }, d3AlphaTarget: { "default": 0, triggerUpdate: false, onChange: function onChange(alphaTarget, state) { state.forceLayout.alphaTarget(alphaTarget); } }, d3VelocityDecay: { "default": 0.4, triggerUpdate: false, onChange: function onChange(velocityDecay, state) { state.forceLayout.velocityDecay(velocityDecay); } }, warmupTicks: { "default": 0, triggerUpdate: false }, // how many times to tick the force engine at init before starting to render cooldownTicks: { "default": Infinity, triggerUpdate: false }, cooldownTime: { "default": 15000, triggerUpdate: false }, // ms onUpdate: { "default": function _default() {}, triggerUpdate: false }, onFinishUpdate: { "default": function _default() {}, triggerUpdate: false }, onEngineTick: { "default": function _default() {}, triggerUpdate: false }, onEngineStop: { "default": function _default() {}, triggerUpdate: false }, onNeedsRedraw: { triggerUpdate: false }, isShadow: { "default": false, triggerUpdate: false } }, methods: { // Expose d3 forces for external manipulation d3Force: function d3Force(state, forceName, forceFn) { if (forceFn === undefined) { return state.forceLayout.force(forceName); // Force getter } state.forceLayout.force(forceName, forceFn); // Force setter return this; }, d3ReheatSimulation: function d3ReheatSimulation(state) { state.forceLayout.alpha(1); this.resetCountdown(); return this; }, // reset cooldown state resetCountdown: function resetCountdown(state) { state.cntTicks = 0; state.startTickTime = new Date(); state.engineRunning = true; return this; }, isEngineRunning: function isEngineRunning(state) { return !!state.engineRunning; }, tickFrame: function tickFrame(state) { !state.isShadow && layoutTick(); paintLinks(); !state.isShadow && paintArrows(); !state.isShadow && paintPhotons(); paintNodes(); return this; // function layoutTick() { if (state.engineRunning) { if (++state.cntTicks > state.cooldownTicks || new Date() - state.startTickTime > state.cooldownTime || state.d3AlphaMin > 0 && state.forceLayout.alpha() < state.d3AlphaMin) { state.engineRunning = false; // Stop ticking graph state.onEngineStop(); } else { state.forceLayout.tick(); // Tick it state.onEngineTick(); } } } function paintNodes() { var getVisibility = index$2(state.nodeVisibility); var getVal = index$2(state.nodeVal); var getColor = index$2(state.nodeColor); var getNodeCanvasObjectMode = index$2(state.nodeCanvasObjectMode); var ctx = state.ctx; // Draw wider nodes by 1px on shadow canvas for more precise hovering (due to boundary anti-aliasing) var padAmount = state.isShadow / state.globalScale; var visibleNodes = state.graphData.nodes.filter(getVisibility); ctx.save(); visibleNodes.forEach(function (node) { var nodeCanvasObjectMode = getNodeCanvasObjectMode(node); if (state.nodeCanvasObject && (nodeCanvasObjectMode === 'before' || nodeCanvasObjectMode === 'replace')) { // Custom node before/replace paint state.nodeCanvasObject(node, ctx, state.globalScale); if (nodeCanvasObjectMode === 'replace') { ctx.restore(); return; } } // Draw wider nodes by 1px on shadow canvas for more precise hovering (due to boundary anti-aliasing) var r = Math.sqrt(Math.max(0, getVal(node) || 1)) * state.nodeRelSize + padAmount; ctx.beginPath(); ctx.arc(node.x, node.y, r, 0, 2 * Math.PI, false); ctx.fillStyle = getColor(node) || 'rgba(31, 120, 180, 0.92)'; ctx.fill(); if (state.nodeCanvasObject && nodeCanvasObjectMode === 'after') { // Custom node after paint state.nodeCanvasObject(node, state.ctx, state.globalScale); } }); ctx.restore(); } function paintLinks() { var getVisibility = index$2(state.linkVisibility); var getColor = index$2(state.linkColor); var getWidth = index$2(state.linkWidth); var getLineDash = index$2(state.linkLineDash); var getCurvature = index$2(state.linkCurvature); var getLinkCanvasObjectMode = index$2(state.linkCanvasObjectMode); var ctx = state.ctx; // Draw wider lines by 2px on shadow canvas for more precise hovering (due to boundary anti-aliasing) var padAmount = state.isShadow * 2; var visibleLinks = state.graphData.links.filter(getVisibility); visibleLinks.forEach(calcLinkControlPoints); // calculate curvature control points for all visible links var beforeCustomLinks = [], afterCustomLinks = [], defaultPaintLinks = visibleLinks; if (state.linkCanvasObject) { var replaceCustomLinks = [], otherCustomLinks = []; visibleLinks.forEach(function (d) { return ({ before: beforeCustomLinks, after: afterCustomLinks, replace: replaceCustomLinks }[getLinkCanvasObjectMode(d)] || otherCustomLinks).push(d); }); defaultPaintLinks = [].concat(_toConsumableArray$2(beforeCustomLinks), afterCustomLinks, otherCustomLinks); beforeCustomLinks = beforeCustomLinks.concat(replaceCustomLinks); } // Custom link before paints ctx.save(); beforeCustomLinks.forEach(function (link) { return state.linkCanvasObject(link, ctx, state.globalScale); }); ctx.restore(); // Bundle strokes per unique color/width/dash for performance optimization var linksPerColor = index(defaultPaintLinks, [getColor, getWidth, getLineDash]); ctx.save(); Object.entries(linksPerColor).forEach(function (_ref) { var _ref2 = _slicedToArray$2(_ref, 2), color = _ref2[0], linksPerWidth = _ref2[1]; var lineColor = !color || color === 'undefined' ? 'rgba(0,0,0,0.15)' : color; Object.entries(linksPerWidth).forEach(function (_ref3) { var _ref4 = _slicedToArray$2(_ref3, 2), width = _ref4[0], linesPerLineDash = _ref4[1]; var lineWidth = (width || 1) / state.globalScale + padAmount; Object.entries(linesPerLineDash).forEach(function (_ref5) { var _ref6 = _slicedToArray$2(_ref5, 2); _ref6[0]; var links = _ref6[1]; var lineDashSegments = getLineDash(links[0]); ctx.beginPath(); links.forEach(function (link) { var start = link.source; var end = link.target; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link ctx.moveTo(start.x, start.y); var controlPoints = link.__controlPoints; if (!controlPoints) { // Straight line ctx.lineTo(end.x, end.y); } else { // Use quadratic curves for regular lines and bezier for loops ctx[controlPoints.length === 2 ? 'quadraticCurveTo' : 'bezierCurveTo'].apply(ctx, _toConsumableArray$2(controlPoints).concat([end.x, end.y])); } }); ctx.strokeStyle = lineColor; ctx.lineWidth = lineWidth; ctx.setLineDash(lineDashSegments || []); ctx.stroke(); }); }); }); ctx.restore(); // Custom link after paints ctx.save(); afterCustomLinks.forEach(function (link) { return state.linkCanvasObject(link, ctx, state.globalScale); }); ctx.restore(); // function calcLinkControlPoints(link) { var curvature = getCurvature(link); if (!curvature) { // straight line link.__controlPoints = null; return; } var start = link.source; var end = link.target; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var l = Math.sqrt(Math.pow(end.x - start.x, 2) + Math.pow(end.y - start.y, 2)); // line length if (l > 0) { var a = Math.atan2(end.y - start.y, end.x - start.x); // line angle var d = l * curvature; // control point distance var cp = { // control point x: (start.x + end.x) / 2 + d * Math.cos(a - Math.PI / 2), y: (start.y + end.y) / 2 + d * Math.sin(a - Math.PI / 2) }; link.__controlPoints = [cp.x, cp.y]; } else { // Same point, draw a loop var _d = curvature * 70; link.__controlPoints = [end.x, end.y - _d, end.x + _d, end.y]; } } } function paintArrows() { var ARROW_WH_RATIO = 1.6; var ARROW_VLEN_RATIO = 0.2; var getLength = index$2(state.linkDirectionalArrowLength); var getRelPos = index$2(state.linkDirectionalArrowRelPos); var getVisibility = index$2(state.linkVisibility); var getColor = index$2(state.linkDirectionalArrowColor || state.linkColor); var getNodeVal = index$2(state.nodeVal); var ctx = state.ctx; ctx.save(); state.graphData.links.filter(getVisibility).forEach(function (link) { var arrowLength = getLength(link); if (!arrowLength || arrowLength < 0) return; var start = link.source; var end = link.target; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var startR = Math.sqrt(Math.max(0, getNodeVal(start) || 1)) * state.nodeRelSize; var endR = Math.sqrt(Math.max(0, getNodeVal(end) || 1)) * state.nodeRelSize; var arrowRelPos = Math.min(1, Math.max(0, getRelPos(link))); var arrowColor = getColor(link) || 'rgba(0,0,0,0.28)'; var arrowHalfWidth = arrowLength / ARROW_WH_RATIO / 2; // Construct bezier for curved lines var bzLine = link.__controlPoints && _construct(Bezier, [start.x, start.y].concat(_toConsumableArray$2(link.__controlPoints), [end.x, end.y])); var getCoordsAlongLine = bzLine ? function (t) { return bzLine.get(t); } // get position along bezier line : function (t) { return { // straight line: interpolate linearly x: start.x + (end.x - start.x) * t || 0, y: start.y + (end.y - start.y) * t || 0 }; }; var lineLen = bzLine ? bzLine.length() : Math.sqrt(Math.pow(end.x - start.x, 2) + Math.pow(end.y - start.y, 2)); var posAlongLine = startR + arrowLength + (lineLen - startR - endR - arrowLength) * arrowRelPos; var arrowHead = getCoordsAlongLine(posAlongLine / lineLen); var arrowTail = getCoordsAlongLine((posAlongLine - arrowLength) / lineLen); var arrowTailVertex = getCoordsAlongLine((posAlongLine - arrowLength * (1 - ARROW_VLEN_RATIO)) / lineLen); var arrowTailAngle = Math.atan2(arrowHead.y - arrowTail.y, arrowHead.x - arrowTail.x) - Math.PI / 2; ctx.beginPath(); ctx.moveTo(arrowHead.x, arrowHead.y); ctx.lineTo(arrowTail.x + arrowHalfWidth * Math.cos(arrowTailAngle), arrowTail.y + arrowHalfWidth * Math.sin(arrowTailAngle)); ctx.lineTo(arrowTailVertex.x, arrowTailVertex.y); ctx.lineTo(arrowTail.x - arrowHalfWidth * Math.cos(arrowTailAngle), arrowTail.y - arrowHalfWidth * Math.sin(arrowTailAngle)); ctx.fillStyle = arrowColor; ctx.fill(); }); ctx.restore(); } function paintPhotons() { var getNumPhotons = index$2(state.linkDirectionalParticles); var getSpeed = index$2(state.linkDirectionalParticleSpeed); var getDiameter = index$2(state.linkDirectionalParticleWidth); var getVisibility = index$2(state.linkVisibility); var getColor = index$2(state.linkDirectionalParticleColor || state.linkColor); var ctx = state.ctx; ctx.save(); state.graphData.links.filter(getVisibility).forEach(function (link) { var numCyclePhotons = getNumPhotons(link); if (!link.hasOwnProperty('__photons') || !link.__photons.length) return; var start = link.source; var end = link.target; if (!start || !end || !start.hasOwnProperty('x') || !end.hasOwnProperty('x')) return; // skip invalid link var particleSpeed = getSpeed(link); var photons = link.__photons || []; var photonR = Math.max(0, getDiameter(link) / 2) / Math.sqrt(state.globalScale); var photonColor = getColor(link) || 'rgba(0,0,0,0.28)'; ctx.fillStyle = photonColor; // Construct bezier for curved lines var bzLine = link.__controlPoints ? _construct(Bezier, [start.x, start.y].concat(_toConsumableArray$2(link.__controlPoints), [end.x, end.y])) : null; var cyclePhotonIdx = 0; var needsCleanup = false; // whether some photons need to be removed from list photons.forEach(function (photon) { var singleHop = !!photon.__singleHop; if (!photon.hasOwnProperty('__progressRatio')) { photon.__progressRatio = singleHop ? 0 : cyclePhotonIdx / numCyclePhotons; } !singleHop && cyclePhotonIdx++; // increase regular photon index photon.__progressRatio += particleSpeed; if (photon.__progressRatio >= 1) { if (!singleHop) { photon.__progressRatio = photon.__progressRatio % 1; } else { needsCleanup = true; return; } } var photonPosRatio = photon.__progressRatio; var coords = bzLine ? bzLine.get(photonPosRatio) // get position along bezier line : { // straight line: interpolate linearly x: start.x + (end.x - start.x) * photonPosRatio || 0, y: start.y + (end.y - start.y) * photonPosRatio || 0 }; ctx.beginPath(); ctx.arc(coords.x, coords.y, photonR, 0, 2 * Math.PI, false); ctx.fill(); }); if (needsCleanup) { // remove expired single hop photons link.__photons = link.__photons.filter(function (photon) { return !photon.__singleHop || photon.__progressRatio <= 1; }); } }); ctx.restore(); } }, emitParticle: function emitParticle(state, link) { if (link) { !link.__photons && (link.__photons = []); link.__photons.push({ __singleHop: true }); // add a single hop particle } return this; } }, stateInit: function stateInit() { return { forceLayout: d3ForceSimulation().force('link', d3ForceLink()).force('charge', d3ForceManyBody()).force('center', d3ForceCenter()).force('dagRadial', null).stop(), engineRunning: false }; }, init: function init(canvasCtx, state) { // Main canvas object to manipulate state.ctx = canvasCtx; }, update: function update(state) { state.engineRunning = false; // Pause simulation state.onUpdate(); if (state.nodeAutoColorBy !== null) { // Auto add color to uncolored nodes autoColorObjects(state.graphData.nodes, index$2(state.nodeAutoColorBy), state.nodeColor); } if (state.linkAutoColorBy !== null) { // Auto add color to uncolored links autoColorObjects(state.graphData.links, index$2(state.linkAutoColorBy), state.linkColor); } // parse links state.graphData.links.forEach(function (link) { link.source = link[state.linkSource]; link.target = link[state.linkTarget]; }); // Feed data to force-directed layout state.forceLayout.stop().alpha(1) // re-heat the simulation .nodes(state.graphData.nodes); // add links (if link force is still active) var linkForce = state.forceLayout.force('link'); if (linkForce) { linkForce.id(function (d) { return d[state.nodeId]; }).links(state.graphData.links); } // setup dag force constraints var nodeDepths = state.dagMode && getDagDepths(state.graphData, function (node) { return node[state.nodeId]; }, { nodeFilter: state.dagNodeFilter, onLoopError: state.onDagError || undefined }); var maxDepth = Math.max.apply(Math, _toConsumableArray$2(Object.values(nodeDepths || []))); var dagLevelDistance = state.dagLevelDistance || state.graphData.nodes.length / (maxDepth || 1) * DAG_LEVEL_NODE_RATIO * (['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? 0.7 : 1); // Fix nodes to x,y for dag mode if (state.dagMode) { var getFFn = function getFFn(fix, invert) { return function (node) { return !fix ? undefined : (nodeDepths[node[state.nodeId]] - maxDepth / 2) * dagLevelDistance * (invert ? -1 : 1); }; }; var fxFn = getFFn(['lr', 'rl'].indexOf(state.dagMode) !== -1, state.dagMode === 'rl'); var fyFn = getFFn(['td', 'bu'].indexOf(state.dagMode) !== -1, state.dagMode === 'bu'); state.graphData.nodes.filter(state.dagNodeFilter).forEach(function (node) { node.fx = fxFn(node); node.fy = fyFn(node); }); } // Use radial force for radial dags state.forceLayout.force('dagRadial', ['radialin', 'radialout'].indexOf(state.dagMode) !== -1 ? d3ForceRadial(function (node) { var nodeDepth = nodeDepths[node[state.nodeId]] || -1; return (state.dagMode === 'radialin' ? maxDepth - nodeDepth : nodeDepth) * dagLevelDistance; }).strength(function (node) { return state.dagNodeFilter(node) ? 1 : 0; }) : null); for (var i = 0; i < state.warmupTicks && !(state.d3AlphaMin > 0 && state.forceLayout.alpha() < state.d3AlphaMin); i++) { state.forceLayout.tick(); } // Initial ticks before starting to render this.resetCountdown(); state.onFinishUpdate(); } }); function linkKapsule (kapsulePropNames, kapsuleType) { var propNames = kapsulePropNames instanceof Array ? kapsulePropNames : [kapsulePropNames]; var dummyK = new kapsuleType(); // To extract defaults dummyK._destructor && dummyK._destructor(); return { linkProp: function linkProp(prop) { // link property config return { "default": dummyK[prop](), onChange: function onChange(v, state) { propNames.forEach(function (propName) { return state[propName][prop](v); }); }, triggerUpdate: false }; }, linkMethod: function linkMethod(method) { // link method pass-through return function (state) { for (var _len = arguments.length, args = new Array(_len > 1 ? _len - 1 : 0), _key = 1; _key < _len; _key++) { args[_key - 1] = arguments[_key]; } var returnVals = []; propNames.forEach(function (propName) { var kapsuleInstance = state[propName]; var returnVal = kapsuleInstance[method].apply(kapsuleInstance, args); if (returnVal !== kapsuleInstance) { returnVals.push(returnVal); } }); return returnVals.length ? returnVals[0] : this; // chain based on the parent object, not the inner kapsule }; } }; } var HOVER_CANVAS_THROTTLE_DELAY = 800; // ms to throttle shadow canvas updates for perf improvement var ZOOM2NODES_FACTOR = 4; // Expose config from forceGraph var bindFG = linkKapsule('forceGraph', CanvasForceGraph); var bindBoth = linkKapsule(['forceGraph', 'shadowGraph'], CanvasForceGraph); var linkedProps = Object.assign.apply(Object, _toConsumableArray$2(['nodeColor', 'nodeAutoColorBy', 'nodeCanvasObject', 'nodeCanvasObjectMode', 'linkColor', 'linkAutoColorBy', 'linkLineDash', 'linkWidth', 'linkCanvasObject', 'linkCanvasObjectMode', 'linkDirectionalArrowLength', 'linkDirectionalArrowColor', 'linkDirectionalArrowRelPos', 'linkDirectionalParticles', 'linkDirectionalParticleSpeed', 'linkDirectionalParticleWidth', 'linkDirectionalParticleColor', 'dagMode', 'dagLevelDistance', 'dagNodeFilter', 'onDagError', 'd3AlphaMin', 'd3AlphaDecay', 'd3VelocityDecay', 'warmupTicks', 'cooldownTicks', 'cooldownTime', 'onEngineTick', 'onEngineStop'].map(function (p) { return _defineProperty({}, p, bindFG.linkProp(p)); })).concat(_toConsumableArray$2(['nodeRelSize', 'nodeId', 'nodeVal', 'nodeVisibility', 'linkSource', 'linkTarget', 'linkVisibility', 'linkCurvature'].map(function (p) { return _defineProperty({}, p, bindBoth.linkProp(p)); })))); var linkedMethods = Object.assign.apply(Object, _toConsumableArray$2(['d3Force', 'd3ReheatSimulation', 'emitParticle'].map(function (p) { return _defineProperty({}, p, bindFG.linkMethod(p)); }))); function adjustCanvasSize(state) { if (state.canvas) { var curWidth = state.canvas.width; var curHeight = state.canvas.height; if (curWidth === 300 && curHeight === 150) { // Default canvas dimensions curWidth = curHeight = 0; } var pxScale = window.devicePixelRatio; // 2 on retina displays curWidth /= pxScale; curHeight /= pxScale; // Resize canvases [state.canvas, state.shadowCanvas].forEach(function (canvas) { // Element size canvas.style.width = "".concat(state.width, "px"); canvas.style.height = "".concat(state.height, "px"); // Memory size (scaled to avoid blurriness) canvas.width = state.width * pxScale; canvas.height = state.height * pxScale; // Normalize coordinate system to use css pixels (on init only) if (!curWidth && !curHeight) { canvas.getContext('2d').scale(pxScale, pxScale); } }); // Relative center panning based on 0,0 var k = transform(state.canvas).k; state.zoom.translateBy(state.zoom.__baseElem, (state.width - curWidth) / 2 / k, (state.height - curHeight) / 2 / k); state.needsRedraw = true; } } function resetTransform(ctx) { var pxRatio = window.devicePixelRatio; ctx.setTransform(pxRatio, 0, 0, pxRatio, 0, 0); } function clearCanvas(ctx, width, height) { ctx.save(); resetTransform(ctx); // reset transform ctx.clearRect(0, 0, width, height); ctx.restore(); //restore transforms } // var forceGraph = index$3({ props: _objectSpread2({ width: { "default": window.innerWidth, onChange: function onChange(_, state) { return adjustCanvasSize(state); }, triggerUpdate: false }, height: { "default": window.innerHeight, onChange: function onChange(_, state) { return adjustCanvasSize(state); }, triggerUpdate: false }, graphData: { "default": { nodes: [], links: [] }, onChange: function onChange(d, state) { [{ type: 'Node', objs: d.nodes }, { type: 'Link', objs: d.links }].forEach(hexIndex); state.forceGraph.graphData(d); state.shadowGraph.graphData(d); function hexIndex(_ref4) { var type = _ref4.type, objs = _ref4.objs; objs.filter(function (d) { if (!d.hasOwnProperty('__indexColor')) return true; var cur = state.colorTracker.lookup(d.__indexColor); return !cur || !cur.hasOwnProperty('d') || cur.d !== d; }).forEach(function (d) { // store object lookup color d.__indexColor = state.colorTracker.register({ type: type, d: d }); }); } }, triggerUpdate: false }, backgroundColor: { onChange: function onChange(color, state) { state.canvas && color && (state.canvas.style.background = color); }, triggerUpdate: false }, nodeLabel: { "default": 'name', triggerUpdate: false }, nodePointerAreaPaint: { onChange: function onChange(paintFn, state) { state.shadowGraph.nodeCanvasObject(!paintFn ? null : function (node, ctx, globalScale) { return paintFn(node, node.__indexColor, ctx, globalScale); }); state.flushShadowCanvas && state.flushShadowCanvas(); }, triggerUpdate: false }, linkPointerAreaPaint: { onChange: function onChange(paintFn, state) { state.shadowGraph.linkCanvasObject(!paintFn ? null : function (link, ctx, globalScale) { return paintFn(link, link.__indexColor, ctx, globalScale); }); state.flushShadowCanvas && state.flushShadowCanvas(); }, triggerUpdate: false }, linkLabel: { "default": 'name', triggerUpdate: false }, linkHoverPrecision: { "default": 4, triggerUpdate: false }, minZoom: { "default": 0.01, onChange: function onChange(minZoom, state) { state.zoom.scaleExtent([minZoom, state.zoom.scaleExtent()[1]]); }, triggerUpdate: false }, maxZoom: { "default": 1000, onChange: function onChange(maxZoom, state) { state.zoom.scaleExtent([state.zoom.scaleExtent()[0], maxZoom]); }, triggerUpdate: false }, enableNodeDrag: { "default": true, triggerUpdate: false }, enableZoomInteraction: { "default": true, triggerUpdate: false }, enablePanInteraction: { "default": true, triggerUpdate: false }, enableZoomPanInteraction: { "default": true, triggerUpdate: false }, // to be deprecated enablePointerInteraction: { "default": true, onChange: function onChange(_, state) { state.hoverObj = null; }, triggerUpdate: false }, autoPauseRedraw: { "default": true, triggerUpdate: false }, onNodeDrag: { "default": function _default() {}, triggerUpdate: false }, onNodeDragEnd: { "default": function _default() {}, triggerUpdate: false }, onNodeClick: { triggerUpdate: false }, onNodeRightClick: { triggerUpdate: false }, onNodeHover: { triggerUpdate: false }, onLinkClick: { triggerUpdate: false }, onLinkRightClick: { triggerUpdate: false }, onLinkHover: { triggerUpdate: false }, onBackgroundClick: { triggerUpdate: false }, onBackgroundRightClick: { triggerUpdate: false }, onZoom: { triggerUpdate: false }, onZoomEnd: { triggerUpdate: false }, onRenderFramePre: { triggerUpdate: false }, onRenderFramePost: { triggerUpdate: false } }, linkedProps), aliases: { // Prop names supported for backwards compatibility stopAnimation: 'pauseAnimation' }, methods: _objectSpread2({ graph2ScreenCoords: function graph2ScreenCoords(state, x, y) { var t = transform(state.canvas); return { x: x * t.k + t.x, y: y * t.k + t.y }; }, screen2GraphCoords: function screen2GraphCoords(state, x, y) { var t = transform(state.canvas); return { x: (x - t.x) / t.k, y: (y - t.y) / t.k }; }, centerAt: function centerAt(state, x, y, transitionDuration) { if (!state.canvas) return null; // no canvas yet // setter if (x !== undefined || y !== undefined) { var finalPos = Object.assign({}, x !== undefined ? { x: x } : {}, y !== undefined ? { y: y } : {}); if (!transitionDuration) { // no animation setCenter(finalPos); } else { new Tween(getCenter()).to(finalPos, transitionDuration).easing(Easing.Quadratic.Out).onUpdate(setCenter).start(); } return this; } // getter return getCenter(); // function getCenter() { var t = transform(state.canvas); return { x: (state.width / 2 - t.x) / t.k, y: (state.height / 2 - t.y) / t.k }; } function setCenter(_ref5) { var x = _ref5.x, y = _ref5.y; state.zoom.translateTo(state.zoom.__baseElem, x === undefined ? getCenter().x : x, y === undefined ? getCenter().y : y); state.needsRedraw = true; } }, zoom: function zoom(state, k, transitionDuration) { if (!state.canvas) return null; // no canvas yet // setter if (k !== undefined) { if (!transitionDuration) { // no animation setZoom(k); } else { new Tween({ k: getZoom() }).to({ k: k }, transitionDuration).easing(Easing.Quadratic.Out).onUpdate(function (_ref6) { var k = _ref6.k; return setZoom(k); }).start(); } return this; } // getter return getZoom(); // function getZoom() { return transform(state.canvas).k; } function setZoom(k) { state.zoom.scaleTo(state.zoom.__baseElem, k); state.needsRedraw = true; } }, zoomToFit: function zoomToFit(state) { var transitionDuration = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0; var padding = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 10; for (var _len = arguments.length, bboxArgs = new Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) { bboxArgs[_key - 3] = arguments[_key]; } var bbox = this.getGraphBbox.apply(this, bboxArgs); if (bbox) { var center = { x: (bbox.x[0] + bbox.x[1]) / 2, y: (bbox.y[0] + bbox.y[1]) / 2 }; var zoomK = Math.max(1e-12, Math.min(1e12, (state.width - padding * 2) / (bbox.x[1] - bbox.x[0]), (state.height - padding * 2) / (bbox.y[1] - bbox.y[0]))); this.centerAt(center.x, center.y, transitionDuration); this.zoom(zoomK, transitionDuration); } return this; }, getGraphBbox: function getGraphBbox(state) { var nodeFilter = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : function () { return true; }; var getVal = index$2(state.nodeVal); var getR = function getR(node) { return Math.sqrt(Math.max(0, getVal(node) || 1)) * state.nodeRelSize; }; var nodesPos = state.graphData.nodes.filter(nodeFilter).map(function (node) { return { x: node.x, y: node.y, r: getR(node) }; }); return !nodesPos.length ? null : { x: [min$1(nodesPos, function (node) { return node.x - node.r; }), max$1(nodesPos, function (node) { return node.x + node.r; })], y: [min$1(nodesPos, function (node) { return node.y - node.r; }), max$1(nodesPos, function (node) { return node.y + node.r; })] }; }, pauseAnimation: function pauseAnimation(state) { if (state.animationFrameRequestId) { cancelAnimationFrame(state.animationFrameRequestId); state.animationFrameRequestId = null; } return this; }, resumeAnimation: function resumeAnimation(state) { if (!state.animationFrameRequestId) { this._animationCycle(); } return this; }, _destructor: function _destructor() { this.pauseAnimation(); this.graphData({ nodes: [], links: [] }); } }, linkedMethods), stateInit: function stateInit() { return { lastSetZoom: 1, zoom: d3Zoom(), forceGraph: new CanvasForceGraph(), shadowGraph: new CanvasForceGraph().cooldownTicks(0).nodeColor('__indexColor').linkColor('__indexColor').isShadow(true), colorTracker: new _default() // indexed objects for rgb lookup }; }, init: function init(domNode, state) { var _this = this; // Wipe DOM domNode.innerHTML = ''; // Container anchor for canvas and tooltip var container = document.createElement('div'); container.classList.add('force-graph-container'); container.style.position = 'relative'; domNode.appendChild(container); state.canvas = document.createElement('canvas'); if (state.backgroundColor) state.canvas.style.background = state.backgroundColor; container.appendChild(state.canvas); state.shadowCanvas = document.createElement('canvas'); // Show shadow canvas //state.shadowCanvas.style.position = 'absolute'; //state.shadowCanvas.style.top = '0'; //state.shadowCanvas.style.left = '0'; //container.appendChild(state.shadowCanvas); var ctx = state.canvas.getContext('2d'); var shadowCtx = state.shadowCanvas.getContext('2d', { willReadFrequently: true }); var pointerPos = { x: -1e12, y: -1e12 }; var getObjUnderPointer = function getObjUnderPointer() { var obj = null; var pxScale = window.devicePixelRatio; var px = pointerPos.x > 0 && pointerPos.y > 0 ? shadowCtx.getImageData(pointerPos.x * pxScale, pointerPos.y * pxScale, 1, 1) : null; // Lookup object per pixel color px && (obj = state.colorTracker.lookup(px.data)); return obj; }; // Setup node drag interaction d3Select(state.canvas).call(d3Drag().subject(function () { if (!state.enableNodeDrag) { return null; } var obj = getObjUnderPointer(); return obj && obj.type === 'Node' ? obj.d : null; // Only drag nodes }).on('start', function (ev) { var obj = ev.subject; obj.__initialDragPos = { x: obj.x, y: obj.y, fx: obj.fx, fy: obj.fy }; // keep engine running at low intensity throughout drag if (!ev.active) { obj.fx = obj.x; obj.fy = obj.y; // Fix points } // drag cursor state.canvas.classList.add('grabbable'); }).on('drag', function (ev) { var obj = ev.subject; var initPos = obj.__initialDragPos; var dragPos = ev; var k = transform(state.canvas).k; var translate = { x: initPos.x + (dragPos.x - initPos.x) / k - obj.x, y: initPos.y + (dragPos.y - initPos.y) / k - obj.y }; // Move fx/fy (and x/y) of nodes based on the scaled drag distance since the drag start ['x', 'y'].forEach(function (c) { return obj["f".concat(c)] = obj[c] = initPos[c] + (dragPos[c] - initPos[c]) / k; }); // prevent freeze while dragging state.forceGraph.d3AlphaTarget(0.3) // keep engine running at low intensity throughout drag .resetCountdown(); // prevent freeze while dragging state.isPointerDragging = true; obj.__dragged = true; state.onNodeDrag(obj, translate); }).on('end', function (ev) { var obj = ev.subject; var initPos = obj.__initialDragPos; var translate = { x: obj.x - initPos.x, y: obj.y - initPos.y }; if (initPos.fx === undefined) { obj.fx = undefined; } if (initPos.fy === undefined) { obj.fy = undefined; } delete obj.__initialDragPos; if (state.forceGraph.d3AlphaTarget()) { state.forceGraph.d3AlphaTarget(0) // release engine low intensity .resetCountdown(); // let the engine readjust after releasing fixed nodes } // drag cursor state.canvas.classList.remove('grabbable'); state.isPointerDragging = false; if (obj.__dragged) { delete obj.__dragged; state.onNodeDragEnd(obj, translate); } })); // Setup zoom / pan interaction state.zoom(state.zoom.__baseElem = d3Select(state.canvas)); // Attach controlling elem for easy access state.zoom.__baseElem.on('dblclick.zoom', null); // Disable double-click to zoom state.zoom.filter(function (ev) { return ( // disable zoom interaction !ev.button && state.enableZoomPanInteraction && (state.enableZoomInteraction || ev.type !== 'wheel') && (state.enablePanInteraction || ev.type === 'wheel') ); }).on('zoom', function (ev) { var t = ev.transform; [ctx, shadowCtx].forEach(function (c) { resetTransform(c); c.translate(t.x, t.y); c.scale(t.k, t.k); }); state.onZoom && state.onZoom(_objectSpread2(_objectSpread2({}, t), _this.centerAt())); // report x,y coordinates relative to canvas center state.needsRedraw = true; }).on('end', function (ev) { return state.onZoomEnd && state.onZoomEnd(_objectSpread2(_objectSpread2({}, ev.transform), _this.centerAt())); }); adjustCanvasSize(state); state.forceGraph.onNeedsRedraw(function () { return state.needsRedraw = true; }).onFinishUpdate(function () { // re-zoom, if still in default position (not user modified) if (transform(state.canvas).k === state.lastSetZoom && state.graphData.nodes.length) { state.zoom.scaleTo(state.zoom.__baseElem, state.lastSetZoom = ZOOM2NODES_FACTOR / Math.cbrt(state.graphData.nodes.length)); state.needsRedraw = true; } }); // Setup tooltip var toolTipElem = document.createElement('div'); toolTipElem.classList.add('graph-tooltip'); container.appendChild(toolTipElem); // Capture pointer coords on move or touchstart ['pointermove', 'pointerdown'].forEach(function (evType) { return container.addEventListener(evType, function (ev) { if (evType === 'pointerdown') { state.isPointerPressed = true; // track click state state.pointerDownEvent = ev; } // detect pointer drag on canvas pan !state.isPointerDragging && ev.type === 'pointermove' && state.onBackgroundClick // only bother detecting drags this way if background clicks are enabled (so they don't trigger accidentally on canvas panning) && (ev.pressure > 0 || state.isPointerPressed) // ev.pressure always 0 on Safari, so we use the isPointerPressed tracker && (ev.pointerType !== 'touch' || ev.movementX === undefined || [ev.movementX, ev.movementY].some(function (m) { return Math.abs(m) > 1; })) // relax drag trigger sensitivity on touch events && (state.isPointerDragging = true); // update the pointer pos var offset = getOffset(container); pointerPos.x = ev.pageX - offset.left; pointerPos.y = ev.pageY - offset.top; // Move tooltip toolTipElem.style.top = "".concat(pointerPos.y, "px"); toolTipElem.style.left = "".concat(pointerPos.x, "px"); // adjust horizontal position to not exceed canvas boundaries toolTipElem.style.transform = "translate(-".concat(pointerPos.x / state.width * 100, "%, ").concat( // flip to above if near bottom state.height - pointerPos.y < 100 ? 'calc(-100% - 8px)' : '21px', ")"); // function getOffset(el) { var rect = el.getBoundingClientRect(), scrollLeft = window.pageXOffset || document.documentElement.scrollLeft, scrollTop = window.pageYOffset || document.documentElement.scrollTop; return { top: rect.top + scrollTop, left: rect.left + scrollLeft }; } }, { passive: true }); }); // Handle click/touch events on nodes/links container.addEventListener('pointerup', function (ev) { state.isPointerPressed = false; if (state.isPointerDragging) { state.isPointerDragging = false; return; // don't trigger click events after pointer drag (pan / node drag functionality) } var cbEvents = [ev, state.pointerDownEvent]; requestAnimationFrame(function () { // trigger click events asynchronously, to allow hoverObj to be set (on frame) if (ev.button === 0) { // mouse left-click or touch if (state.hoverObj) { var fn = state["on".concat(state.hoverObj.type, "Click")]; fn && fn.apply(void 0, [state.hoverObj.d].concat(cbEvents)); } else { state.onBackgroundClick && state.onBackgroundClick.apply(state, cbEvents); } } if (ev.button === 2) { // mouse right-click if (state.hoverObj) { var _fn = state["on".concat(state.hoverObj.type, "RightClick")]; _fn && _fn.apply(void 0, [state.hoverObj.d].concat(cbEvents)); } else { state.onBackgroundRightClick && state.onBackgroundRightClick.apply(state, cbEvents); } } }); }, { passive: true }); container.addEventListener('contextmenu', function (ev) { if (!state.onBackgroundRightClick && !state.onNodeRightClick && !state.onLinkRightClick) return true; // default contextmenu behavior ev.preventDefault(); return false; }); state.forceGraph(ctx); state.shadowGraph(shadowCtx); // var refreshShadowCanvas = throttle(function () { // wipe canvas clearCanvas(shadowCtx, state.width, state.height); // Adjust link hover area state.shadowGraph.linkWidth(function (l) { return index$2(state.linkWidth)(l) + state.linkHoverPrecision; }); // redraw var t = transform(state.canvas); state.shadowGraph.globalScale(t.k).tickFrame(); }, HOVER_CANVAS_THROTTLE_DELAY); state.flushShadowCanvas = refreshShadowCanvas.flush; // hook to immediately invoke shadow canvas paint // Kick-off renderer (this._animationCycle = function animate() { // IIFE var doRedraw = !state.autoPauseRedraw || !!state.needsRedraw || state.forceGraph.isEngineRunning() || state.graphData.links.some(function (d) { return d.__photons && d.__photons.length; }); state.needsRedraw = false; if (state.enablePointerInteraction) { // Update tooltip and trigger onHover events var obj = !state.isPointerDragging ? getObjUnderPointer() : null; // don't hover during drag if (obj !== state.hoverObj) { var prevObj = state.hoverObj; var prevObjType = prevObj ? prevObj.type : null; var objType = obj ? obj.type : null; if (prevObjType && prevObjType !== objType) { // Hover out var fn = state["on".concat(prevObjType, "Hover")]; fn && fn(null, prevObj.d); } if (objType) { // Hover in var _fn2 = state["on".concat(objType, "Hover")]; _fn2 && _fn2(obj.d, prevObjType === objType ? prevObj.d : null); } var tooltipContent = obj ? index$2(state["".concat(obj.type.toLowerCase(), "Label")])(obj.d) || '' : ''; toolTipElem.style.visibility = tooltipContent ? 'visible' : 'hidden'; toolTipElem.innerHTML = tooltipContent; // set pointer if hovered object is clickable state.canvas.classList[obj && state["on".concat(objType, "Click")] || !obj && state.onBackgroundClick ? 'add' : 'remove']('clickable'); state.hoverObj = obj; } doRedraw && refreshShadowCanvas(); } if (doRedraw) { // Wipe canvas clearCanvas(ctx, state.width, state.height); // Frame cycle var globalScale = transform(state.canvas).k; state.onRenderFramePre && state.onRenderFramePre(ctx, globalScale); state.forceGraph.globalScale(globalScale).tickFrame(); state.onRenderFramePost && state.onRenderFramePost(ctx, globalScale); } update(); // update canvas animation tweens state.animationFrameRequestId = requestAnimationFrame(animate); })(); }, update: function updateFn(state) {} }); return forceGraph; })); //# sourceMappingURL=force-graph.js.map